Nano Research

, Volume 12, Issue 4, pp 869–875 | Cite as

Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene

  • Yan Long
  • Jian Li
  • Lanlan WuEmail author
  • Qishun Wang
  • Yu Liu
  • Xiao Wang
  • Shuyan SongEmail author
  • Hongjie Zhang
Research Article


The Pt-Ni nanoframe catalysts have attracted great interest owing to their unique electronic structure and excellent catalytic performance. However, the stability of the tenuous edges of nanoframe-structures is dissatisfactory and their universal applications in catalytic market beyond electrocatalytic reactions are yet to be tapped and explored. Herein, we developed a new core@shell structured Pt-Ni nanoframe@CeO2 (Pt-Ni NF@CeO2) composite via etching the Ni from inhomogeneous Pt-Ni rhombic dodecahedra (Pt-Ni RD) by cerium(III) acetate hydrate (Ce(OAc)3). In this path, Pt-Ni RD was used as self-sacrificial template, while the Ce(OAc)3 serves as the provider of the Ce3+ source and OH for the formation of CeO2 shell, etchant of Pt-Ni RD, and the surface modification agent. By this way, the etching of Pt-Ni RD and the formation of the CeO2 shell are simultaneously proceeded to form the final Pt-Ni NF@CeO2 in one step. The obtained Pt-Ni NF@CeO2 exhibits strong interfacial charge transfer interaction between Pt-Ni NF core and CeO2 shell even without reduction treatment, leading to enhanced catalytic activity in the hydrogenation of phenylacetylene. After introduction of trace silver, the Pt-Ni-Ag4.9 NF@CeO2 achieves remarkable catalytic performance for the selective conversion of phenylacetylene to styrene: high conversion (100%), styrene selectivity (86.5%), and good stability. It reveals that encapsulation noble metal nanoframes into metal oxide to form core@shell structured hybrids will indeed enhance their stability and catalytic properties. Particularly, this work expends the application of noble metal nanoframes materials to hydrogenation reactions.


CeO2 Pt-Ni nanoframes core@shell sturcuture silver modification hydrogenation of phenylacetylene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful for the financial aid from the National Natural Science Foundation of China (Nos. 21590794, 21771173, and 21521092), the project development plan of science and technology of Jilin Province (Nos. 20180101179JC and 20160520126JH), and CAS-CSIRO project (GJHZ1730).

Supplementary material

12274_2018_2315_MOESM1_ESM.pdf (4.4 mb)
Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene


  1. [1]
    Wang, C. Y.; Zhang, L. H.; Yang, H. Z.; Pan, J. F.; Liu, J. Y.; Dotse, C.; Luan, Y. L.; Gao, R.; Lin, C. K.; Zhang, J. et al. High-indexed Pt3Ni alloy tetrahexahedral nanoframes evolved through preferential CO etching. Nano Lett. 2017, 17, 2204–2210.CrossRefGoogle Scholar
  2. [2]
    Becknell, N.; Son, Y.; Kim, D.; Li, D. G.; Yu, Y.; Niu, Z. Q.; Lei, T.; Sneed, B. T.; More, K. L.; Markovic, N. M. et al. Control of architecture in rhombic dodecahedral Pt-Ni nanoframe electrocatalysts. J. Am. Chem. Soc. 2017, 139, 11678–11681.CrossRefGoogle Scholar
  3. [3]
    Lin, R.; Cai, X.; Zeng, H.; Yu, Z. P. Stability of high-performance Pt-based catalysts for oxygen reduction reactions. Adv. Mater. 2018, 30, 1705332.CrossRefGoogle Scholar
  4. [4]
    Luo, S.P.; Shen, P. K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 2017, 11, 11946–11953.CrossRefGoogle Scholar
  5. [5]
    Kwon, T.; Hwang, H.; Sa, Y. J.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Cobalt assisted synthesis of IrCu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1604688.CrossRefGoogle Scholar
  6. [6]
    Kwon, H.; Kabiraz, M. K.; Park, J.; Oh, A.; Baik, H.; Choi, S. I.; Lee, K. Dendrite-embedded platinum-nickel multiframes as highly active and durable electrocatalyst toward the oxygen reduction reaction. Nano Lett. 2018, 18, 2930–2936.CrossRefGoogle Scholar
  7. [7]
    Kwon, T.; Jun, M.; Kim, H. Y.; Oh, A.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Vertex-reinforced PtCuCo ternary nanoframes as efficient and stable electrocatalysts for the oxygen reduction reaction and the methanol oxidation reaction. Adv. Funct. Mater. 2018, 28, 1706440.CrossRefGoogle Scholar
  8. [8]
    Oh, A.; Sa, Y. J.; Hwang, H.; Baik, H.; Kim, J.; Kim, B.; Joo, S. H.; Lee, K. Rational design of Pt-Ni-Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale 2016, 8, 16379–16386.CrossRefGoogle Scholar
  9. [9]
    Wu, Y.; Wang, D. S.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. D. Sophisticated construction of Au islands on Pt-Ni: An ideal trimetallic nanoframe catalyst. J. Am. Chem. Soc. 2014, 136, 11594–11597.CrossRefGoogle Scholar
  10. [10]
    Park, J.; Kabiraz, M. K.; Kwon, H.; Park, S.; Baik, H.; Choi, S. I.; Lee, K. Radially phase segregated PtCu@PtCuNi dendrite@frame nanocatalyst for the oxygen reduction reaction. Acs Nano 2017, 11, 10844–10851.CrossRefGoogle Scholar
  11. [11]
    Li, G. D.; Tang, Z. Y. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4011.CrossRefGoogle Scholar
  12. [12]
    Ray, C.; Pal, T. Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J. Mater. Chem. A 2017, 5, 9465–9487.CrossRefGoogle Scholar
  13. [13]
    Zhang, B.; Guo, X. W.; Liang, H. J.; Ge, H. B.; Gu, X. M.; Chen, S.; Yang, H. M.; Qin, Y. Tailoring Pt-Fe2O3 interfaces for selective reductive coupling reaction to synthesize imine. ACS Catal. 2016, 6, 6560–6566.CrossRefGoogle Scholar
  14. [14]
    Liang, H. J.; Zhang, B.; Ge, H. B.; Gu, X. M.; Zhang, S. F.; Qin, Y. Porous TiO2/Pt/TiO2 sandwich catalyst for highly selective semihydrogenation of alkyne to olefin. ACS Catal. 2017, 7, 6567–6572.CrossRefGoogle Scholar
  15. [15]
    Long, Y.; Song, S. Y.; Li, J.; Wu, L. L.; Wang, Q. S.; Liu, Y.; Jin, R. C.; Zhang, H. J. Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect. ACS Catal. 2018, 8, 8506–8512.CrossRefGoogle Scholar
  16. [16]
    Ta, N.; Liu, J.; Chenna, S.; Crozier, P. A.; Li, Y.; Chen, A. L.; Shen, W. J. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J. Am. Chem. Soc. 2012, 134, 20585–20588.CrossRefGoogle Scholar
  17. [17]
    Mitsudome, T.; Mikami, Y.; Matoba, M.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Design of a silver-cerium dioxide core-shell nanocomposite catalyst for chemoselective reduction reactions. Angew. Chem., Int. Ed. 2012, 51, 136–139.CrossRefGoogle Scholar
  18. [18]
    Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Pt@CeO2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 2013, 135, 15864–15872.CrossRefGoogle Scholar
  19. [19]
    Wang, X.; Zhang, Y. B.; Song, S. Y.; Yang, X. G.; Wang, Z.; Jin, R. C.; Zhang, H. J. L-arginine-triggered self-assembly of CeO2 nanosheaths on palladium nanoparticles in water. Angew. Chem., Int. Ed. 2016, 55, 4542–4546.CrossRefGoogle Scholar
  20. [20]
    Li, J.; Song, S. Y.; Long, Y.; Wu, L. L.; Wang, X.; Xing, Y.; Jin, R. C.; Liu, X. G.; Zhang, H. J. Investigating the hybrid-structure-effect of CeO2-encapsulated Au nanostructures on the transfer coupling of nitrobenzene. Adv. Mater. 2018, 30, 1704416.CrossRefGoogle Scholar
  21. [21]
    Song, S. Y.; Li, K.; Pan, J.; Wang, F.; Li, J. Q.; Feng, J.; Yao, S.; Ge, X.; Wang, X.; Zhang, H. J. Achieving the trade-off between selectivity and activity in semihydrogenation of alkynes by fabrication of (asymmetrical Pd@Ag core)@(CeO2 shell) nanocatalysts via autoredox reaction. Adv. Mater. 2017, 29, 1605332.CrossRefGoogle Scholar
  22. [22]
    Song, S. Y.; Liu, X. C.; Li, J. Q.; Pan, J.; Wang, F.; Xing, Y.; Wang, X.; Liu, X. G.; Zhang, H. J. Confining the nucleation of Pt to in situ form (Ptenriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Adv. Mater. 2017, 29, 1700495.CrossRefGoogle Scholar
  23. [23]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.CrossRefGoogle Scholar
  24. [24]
    Mathurin, L. E.; Tao, J.; Xin, H. L.; Li, J.; Zhu, Y. M.; Chen, J. Y. Dendritic core-frame and frame multimetallic rhombic dodecahedra: A comparison study of composition and structure effects on electrocatalysis of methanol oxidation. ChemNanoMat 2018, 4, 76–87.CrossRefGoogle Scholar
  25. [25]
    Yang, C. W.; Yu, X. J.; Heißler, S.; Weidler, P. G.; Nefedov, A.; Wang, Y. M.; Wöell, C.; Kropp, T.; Paier, J.; Sauer, J. O2 activation on ceria catalysts—The importance of substrate crystallographic orientation. Angew. Chem., Int. Ed. 2017, 56, 16399–16404.CrossRefGoogle Scholar
  26. [26]
    Yang, C. W.; Yu, X. J.; Heißler, S.; Nefedov, A.; Colussi, S.; Llorca, J.; Trovarelli, A.; Wang, Y. M.; Wöell, C. Surface faceting and reconstruction of ceria nanoparticles. Angew. Chem., Int. Ed. 2017, 56, 375–379.CrossRefGoogle Scholar
  27. [27]
    Lee, K.; Kang, S. W.; Lee, S. U.; Park, K. H.; Lee, Y. W.; Han, S. W. One-pot synthesis of monodisperse 5 nm Pd-Ni nanoalloys for electrocatalytic ethanol oxidation. ACS Appl. Mater. Interfaces 2012, 4, 4208–4214.CrossRefGoogle Scholar
  28. [28]
    Niu, Z. Q.; Li, Y. D. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 2014, 26, 72–83.CrossRefGoogle Scholar
  29. [29]
    Albani, D.; Capdevila-Cortada, M.; Vilé, G.; Mitchell, S.; Martin, O.; López, N.; Pérez-Ramírez, J. Semihydrogenation of acetylene on indium oxide: Proposed single-ensemble catalysis. Angew. Chem., Int. Ed. 2017, 56, 10755–10760.CrossRefGoogle Scholar
  30. [30]
    Albani, D.; Shahrokhi, M.; Chen, Z. P.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 2018, 9, 2634.CrossRefGoogle Scholar
  31. [31]
    Crespo-Quesada, M.; Cárdenas-Lizana, F.; Dessimoz, A. L.; Kiwi-Minsker, L. Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal. 2012, 2, 1773–1786.CrossRefGoogle Scholar
  32. [32]
    Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.CrossRefGoogle Scholar
  33. [33]
    Wang, Z. Q.; Yang, L.; Zhang, R.; Li, L.; Cheng, Z. M.; Zhou, Z. M. Selective hydrogenation of phenylacetylene over bimetallic Pd-Cu/Al2O3 and Pd-Zn/Al2O3 catalysts. Catal. Today 2016, 264, 37–43.CrossRefGoogle Scholar
  34. [34]
    Shao, L. D.; Huang, X.; Teschner, D.; Zhang, W. Gold supported on graphene oxide: An active and selective catalyst for phenylacetylene hydrogenations at low temperatures. ACS Catal. 2014, 4, 2369–2373.CrossRefGoogle Scholar
  35. [35]
    Erokhin, A. V.; Lokteva, E. S.; Yermakov, A. Y.; Boukhvalov, D. W.; Maslakov, K. I.; Golubina, E. V.; Uimin, M. A. Phenylacetylene hydrogenation on Fe@C and Ni@C core-shell nanoparticles: About intrinsic activity of graphene-like carbon layer in H2 activation. Carbon 2014, 74, 291–301.CrossRefGoogle Scholar
  36. [36]
    Yu, J. W.; Wang, X. Y.; Yuan, C. Y.; Li, W. Z.; Wang, Y. H.; Zhang, Y. W. Synthesis of ultrathin Ni nanosheets for semihydrogenation of phenylacetylene to styrene under mild conditions. Nanoscale 2018, 10, 6936–6944.CrossRefGoogle Scholar
  37. [37]
    Semba, K.; Fujihara, T.; Xu, T. H.; Terao, J.; Tsuji, Y. Copper-catalyzed highly selective semihydrogenation of non-polar carbon-carbon multiple bonds using a Silane and an alcohol. Adv. Synth. Catal. 2012, 354, 1542–1550.CrossRefGoogle Scholar
  38. [38]
    Li, C.; Shao, Z. F.; Pang, M.; Williams, C. T.; Zhang, X. F.; Liang, C. H. Carbon nanotubes supported mono- and bimetallic Pt and Ru catalysts for selective hydrogenation of phenylacetylene. Ind. Eng. Chem. Res. 2012, 51, 4934–4941.CrossRefGoogle Scholar
  39. [39]
    Li, C.; Shao, Z. F.; Pang, M.; Williams, C. T.; Liang, C. H. Carbon nanotubes supported Pt catalysts for phenylacetylene hydrogenation: Effects of oxygen containing surface groups on Pt dispersion and catalytic performance. Catal. Today 2012, 186, 69–75.CrossRefGoogle Scholar
  40. [40]
    Xue, Y. J.; Yao, R. H.; Li, J. R.; Wang, G. M.; Wu, P.; Li, X. H. Efficient Pt-FeOx/TiO2@SBA-15 catalysts for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Catal. Sci. Technol. 2017, 7, 6112–6123.CrossRefGoogle Scholar
  41. [41]
    Xie, Z. H.; Yan, B. H.; Kattel, S.; Lee, J. H.; Yao, S. Y.; Wu, Q. Y.; Rui, N.; Gomez, E.; Liu, Z. Y.; Xu, W. Q. et al. Dry reforming of methane over CeO2-supported Pt-Co catalysts with enhanced activity. Appl. Catal. B Environ 2018, 236, 280–293.CrossRefGoogle Scholar
  42. [42]
    Sun, J.; Sun, W.; Du, L.; Du, C.; Gao, Y.; Yin, G. Tailored NbO2 modified Pt/graphene as highly stable electrocatalyst towards oxygen reduction reaction. Fuel Cells 2018, 18, 360–368.CrossRefGoogle Scholar
  43. [43]
    Kiadehi, A. D.; Taghizadeh, M. Evaluation of a micro-channel reactor for steam reforming of ethylene glycol: A comparative study of catalytic activity of Pt or/and Ni supported γ-alumina catalysts. Int. J. Hydrogen Energy 2018, 43, 4826–4838.CrossRefGoogle Scholar
  44. [44]
    Singha, R. K.; Shukla, A.; Yadav, A.; Sasaki, T.; Sandupatla, A.; Deo, G.; Bal, R. Pt-CeO2 nanoporous spheres-an excellent catalyst for partial oxidation of methane: Effect of the bimodal pore structure. Catal. Sci. Technol. 2017, 7, 4720–4735.CrossRefGoogle Scholar
  45. [45]
    Lee, J.; Ryou, Y. S.; Chan, X. J.; Kim, T. J.; Kim, D. H. How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: The origin of improved thermal stability of Pt/CeO2 compared to CeO2. J. Phys. Chem. C 2016, 120, 25870–25879.CrossRefGoogle Scholar
  46. [46]
    Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem., Int. Ed. 2016, 55, 8319–8323.CrossRefGoogle Scholar
  47. [47]
    Vilé, G.; Pérez-Ramírez, J. Beyond the use of modifiers in selective alkyne hydrogenation: Silver and gold nanocatalysts in flow mode for sustainable alkene production. Nanoscale 2014, 6, 13476–13482.CrossRefGoogle Scholar
  48. [48]
    Mitsudome, T.; Urayama, T.; Yamazaki, K.; Maehara, Y.; Yamasaki, J.; Gohara, K.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Design of core-Pd/shell-Ag nanocomposite catalyst for selective semihydrogenation of alkynes. ACS Catal. 2016, 6, 666–670.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.University of Science and Technology of ChinaHefeiChina

Personalised recommendations