Skip to main content

N-doped-carbon coated Ni2P-Ni sheets anchored on graphene with superior energy storage behavior

Abstract

Transition metal phosphides (TMPs) have been widely studied as electrode materials for supercapacitors and lithium-ion batteries due to their high electrochemical reaction activities. The practical application of TMPs was generally hampered by their low conductivity and large volume changes during electrochemical reactions. In this work, nitrogen-doped-carbon (NC) coated Ni2P-Ni hybrid sheets were fabricated and loaded into highly conductive graphene network, forming a Ni2P-Ni@NC@G composite. The highly conductive graphene, the NC coating layer, and the decorated Ni nanoparticles in combination offer continuous electron transport channels in the composite, resulting with facilitated electrode reaction kinetics and superior rate performance. Besides, the flexible graphene sheets and well-decorated Ni particles among Ni2P can effectively buffer the harmful stress during electrochemical reactions to maintain an integrated electrode structure. With these favorable features, the composite demonstrated superior capacitive and lithium storage behavior. As an electrode material for supercapacitors, the composite shows a remarkable capacitance of 2,335.5 F·g−1 at 1 A·g−1 and high capacitance retention of 86.4% after 2,000 cycles. Asymmetrical supercapacitors (ASCs) were also prepared with remarkable energy density of 53.125 Whk·g−1 and power density of 3,750 Whk·g−1. As an anode for lithium ion batteries, a high reversible capacity of 1,410 mAh·g−1 can be delivered at 0.2 A·g−1 after 200 cycles. Promising high rate capability was also demonstrated with a high discharge capacity of 750 mAh·g−1 at 8 A·g−1. This work shall pave the way for the production of other TMP materials for energy storage systems.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  2. [2]

    Zhang, D. Y.; Zhang, Y. H.; Luo, Y. S.; Zhang, Y.; Li, X. W.; Yu, X. L.; Ding, H.; Chu, P. K.; Sun, L. High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel. Nano Res. 2018, 11, 1651–1663.

    Article  Google Scholar 

  3. [3]

    Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk–shell-like nanostructural design. Adv. Mater. 2017, 29, 1604015.

    Article  Google Scholar 

  4. [4]

    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  5. [5]

    Si, W. P.; Yan, C. L.; Chen, Y.; Oswald, S.; Han, L. Y.; Schmidt, O. G. On Chip, All solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers. Energy Environ. Sci. 2013, 6, 3218–3223.

    Article  Google Scholar 

  6. [6]

    Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 2008, 130, 2730–2731.

    Article  Google Scholar 

  7. [7]

    Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.

    Article  Google Scholar 

  8. [8]

    Sun, H. H.; Ma, Z.; Qiu, Y. F.; Liu, H.; Gao, G. G. Ni@NiO nanowires on nickel foam prepared via “acid hungry” strategy: High supercapacitor performance and robust electrocatalysts for water splitting reaction. Small 2018, 14, 1800294.

    Article  Google Scholar 

  9. [9]

    Wang, Y. P.; Pan, A. Q.; Zhang, Y. F.; Shi, J. R.; Lin, J. D.; Liang, S. Q.; Cao, G. Z. Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 9153–9160.

    Article  Google Scholar 

  10. [10]

    Seo, D. H.; Pineda, S.; Yick, S.; Bell, J.; Han, Z. J.; Ostrikov, K. Plasmaenabled sustainable elemental lifecycles: Honeycomb-derived graphenes for next-generation biosensors and supercapacitors. Green Chem. 2015, 17, 2164–2171.

    Article  Google Scholar 

  11. [11]

    Wang, X. J.; Chen, K.; Wang, G.; Liu, X. J.; Wang, H. Rational design of three-dimensional graphene encapsulated with hollow FeP@carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries. ACS Nano 2017, 11, 11602–11616.

    Article  Google Scholar 

  12. [12]

    Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494–502.

    Article  Google Scholar 

  13. [13]

    Zhu, P. P.; Zhang, Z.; Hao, S. J.; Zhang, B. W.; Zhao, P. F.; Yu, J.; Cai, J. X.; Huang, Y. Z.; Yang, Z. Y. Multi-channel FeP@C octahedra anchored on reduced graphene oxide nanosheet with efficient performance for lithium-ion batteries. Carbon 2018, 139, 477–485.

    Article  Google Scholar 

  14. [14]

    Elshahawy, A. M.; Guan, C.; Li, X.; Zhang, H.; Hu, Y. T.; Wu, H. J.; Pennycook, S. J.; Wang, J. Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy 2017, 39, 162–171.

    Article  Google Scholar 

  15. [15]

    Pan, Y.; Chen, Y. J.; Lin, Y.; Cui, P. X.; Sun, K. A.; Liu, Y. Q.; Liu, C. G. Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution. J. Mater. Chem. A 2016, 4, 14675–14686.

    Article  Google Scholar 

  16. [16]

    Lou, P. L.; Cui, Z. H.; Jia, Z. Q.; Sun, J. Y.; Tan, Y. B.; Guo, X. X. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano 2017, 11, 3705–3715.

    Article  Google Scholar 

  17. [17]

    Bai, Y. J.; Zhang, H. J.; Fang, L.; Liu, L.; Qiu, H. J.; Wang, Y. Novel peapod array of Ni2P@graphitized carbon fiber composites growing on Ti substrate: A superior material for Li-ion batteries and the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 5434–5441.

    Article  Google Scholar 

  18. [18]

    Huang, C.; Pi, C. R.; Zhang, X. M.; Ding, K.; Qin, P.; Fu, J. J.; Peng, X.; Gao, B.; Chu, P. K.; Huo, K. F. In situ synthesis of MoP nanoflakes intercalated N-doped graphene nanobelts from MoO3-amine hybrid for high-efficient hydrogen evolution reaction. Small 2018, 14, 1800667.

    Article  Google Scholar 

  19. [19]

    Xu, Y. L.; Peng, B.; Mulder, F. M. A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite. Adv. Energy Mater. 2018, 8, 1701847.

    Article  Google Scholar 

  20. [20]

    Ni, Y. H.; Jin, L. N.; Hong, J. M. Phase-controllable synthesis of nanosized nickel phosphides and comparison of photocatalytic degradation ability. Nanoscale 2011, 3, 196–200.

    Article  Google Scholar 

  21. [21]

    Li, H.; Xu, S. M.; Yan, H.; Yang, L.; Xu, S. L. Cobalt phosphide composite encapsulated within N,P-doped carbon nanotubes for synergistic oxygen evolution. Small 2018, 14, 1800367.

    Article  Google Scholar 

  22. [22]

    Wang, Y.; Kong, B.; Zhao, D. Y.; Wang, H. T.; Selomulya, C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26–55.

    Article  Google Scholar 

  23. [23]

    Liu, S. D.; Sankar, K. V.; Kundu, A.; Ma, M.; Kwon, J. Y.; Jun, S. C. Honeycomb-like interconnected network of nickel phosphide heteronanoparticles with superior electrochemical performance for supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 21829–21838.

    Article  Google Scholar 

  24. [24]

    Shi, S. S.; Li, Z. P.; Sun, Y.; Wang, B.; Liu, Q. N.; Hou, Y. L.; Huang, S. F.; Huang, J. Y.; Zhao, Y. F. A covalent heterostructure of monodisperse Ni2P immobilized on N, P-co-doped carbon nanosheets for high performance sodium/lithium storage. Nano Energy 2018, 48, 510–517.

    Article  Google Scholar 

  25. [25]

    Lu, Y.; Tu, J. P.; Xiong, Q. Q.; Qiao, Y. Q.; Zhang, J.; Gu, C. D.; Wang, X. L.; Mao, S. X. Carbon-decorated single-crystalline Ni2P nanotubes derived from Ni nanowire templates: A high-performance material for Li-ion batteries. Chemistry 2012, 18, 6031–6038.

    Article  Google Scholar 

  26. [26]

    Hou, S. J.; Xu, X. T.; Wang, M.; Xu, Y. Q.; Lu, T.; Yao, Y. F.; Pan, L. K. Carbon-incorporated janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 19054–19061.

    Article  Google Scholar 

  27. [27]

    Wang, D.; Kong, L. B.; Liu, M. C.; Luo, Y. C.; Kang, L. An approach to preparing Ni-P with different phases for use as supercapacitor electrode materials. Chem.-Eur. J. 2015, 21, 17897–17903.

    Article  Google Scholar 

  28. [28]

    Patil, B.; Ahn, S.; Yu, S.; Song, H.; Jeong, Y.; Kim, J. H.; Ahn, H. Electrochemical performance of a coaxial fiber-shaped asymmetric supercapacitor based on nanostructured MnO2/CNT-web paper and Fe2O3/ carbon fiber electrodes. Carbon 2018, 134, 366–375.

    Article  Google Scholar 

  29. [29]

    Wang, D. T.; Wang, K.; Sun, L.; Wu, H. C.; Wang, J.; Zhao, Y. X.; Yan, L. J.; Luo, Y. F.; Jiang, K. L.; Li, Q. Q. et al. MnO2 nanoparticles anchored on carbon nanotubes with hybrid supercapacitor-battery behavior for ultrafast lithium storage. Carbon 2018, 139, 145–155.

    Article  Google Scholar 

  30. [30]

    Sun, L.; Zhang, Y. X.; Zhang, Y.; Si, H. C.; Qin, W. P.; Zhang, Y. H. Reduced graphene oxide nanosheet modified NiMn-LDH nanoflake arrays for high-performance supercapacitors. Chem. Commun. 2018, 54, 10172–10175.

    Article  Google Scholar 

  31. [31]

    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.

    Article  Google Scholar 

  32. [32]

    Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.

    Article  Google Scholar 

  33. [33]

    Du, Z.; Ai, W.; Yang, J.; Gong, Y.; Yu, C.; Zhao, J.; Dong, X.; Sun, G.; Huang, W. In situ fabrication of Ni2P nanoparticles embedded in nitrogen and phosphorus co-doped carbon nanofibers as a superior anode for Li-ion batteries. ACS Sustain. Chem. Eng. 2018, 6, 14795–14801.

    Article  Google Scholar 

  34. [34]

    Miao, X., Yin, R., Ge, X., Li, Z. Yin, L. Ni2P@carbon core-shell nanoparticlearched 3D interconnected graphene aerogel architectures as anodes for high-performance sodium-ion batteries. Small 2017, 13, 1–8.

    Article  Google Scholar 

  35. [35]

    Tan, Y. M.; Xu, C. F.; Chen, G. X.; Liu, Z. H.; Ma, M.; Xie, Q. J.; Zheng, N. F.; Yao, S. Z. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl. Mater. Interfaces 2013, 5, 2241–2248.

    Article  Google Scholar 

  36. [36]

    Li, J. B.; Yan, D.; Hou, S. J.; Lu, T.; Yao, Y. F.; Pan, L. K. Metal-organic frameworks converted flower-like hybrid with Co3O4 nanoparticles decorated on nitrogen-doped carbon sheets for boosted lithium storage performance. Chem. Eng. J. 2018, 354, 172–181.

    Article  Google Scholar 

  37. [37]

    Wei, D. H.; Li, X. N.; Zhu, Y. C.; Liang, J. W.; Zhang, K. L.; Qian, Y. T. One-pot hydrothermal synthesis of peony-like Ag/Ag0.68V2O5 hybrid as high-performance anode and cathode materials for rechargeable lithium batteries. Nanoscale 2014, 6, 5239–5244.

    Article  Google Scholar 

  38. [38]

    Cao, F. F.; Zhao, M. T.; Yu, Y. F.; Chen, B.; Huang, Y.; Yang, J.; Cao, X. H.; Lu, Q. P.; Zhang, X.; Zhang, Z. C. et al. Zhang, H. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J. Am. Chem. Soc. 2016, 138, 6924–6927.

    Article  Google Scholar 

  39. [39]

    Patiño, J.; López-Salas, N.; Gutiérrez, M. C.; Carriazo, D.; Ferrer, M. L.; del Monte, F. Phosphorus-doped carbon–carbon nanotube hierarchical monoliths as true three-dimensional electrodes in supercapacitor cells. J. Mater. Chem. A 2016, 4, 1251–1263.

    Article  Google Scholar 

  40. [40]

    Zhang, Y. J.; Mori, T.; Ye, J. H.; Antonietti, M. Phosphorus-doped carbon nitride solid: Enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 2010, 132, 6294–6295.

    Article  Google Scholar 

  41. [41]

    Chang, Y. N.; Zhang, G. X.; Han, B.; Li, H. Y.; Hu, C. J.; Pang, Y. C.; Chang, Z.; Sun, X. M. Polymer dehalogenation-enabled fast fabrication of N,S-codoped carbon materials for superior supercapacitor and deionization applications. ACS Appl. Mater. Interfaces 2017, 9, 29753–29759.

    Article  Google Scholar 

  42. [42]

    Nam, S. H.; Shim, H. S.; Kim, Y. S.; Dar, M. A.; Kim, J. G.; Kim, W. B. Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl. Mater. Interfaces 2010, 2, 2046–2052.

    Article  Google Scholar 

  43. [43]

    Chen, G.; Wang, Z. Y.; Xia, D. G. One-pot synthesis of carbon nanotube@SnO2−Au coaxial nanocable for lithium-ion batteries with high rate capability. Chem. Mater. 2008, 20, 6951–6956.

    Article  Google Scholar 

  44. [44]

    Yu, H.; Rui, X. H.; Tan, H. T.; Chen, J.; Huang, X.; Xu, C.; Liu, W. L.; Yu, D. Y. W.; Hng, H. H.; Hoster, H. E. et al. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale 2013, 5, 4937–4943.

    Article  Google Scholar 

  45. [45]

    Zhang, W.; Gong, Y. X.; Mellott, N. P.; Liu, D. W.; Li, J. A. Synthesis of nickel doped anatase titanate as high performance anode materials for lithium ion batteries. J. Power Sources 2015, 276, 39–45.

    Article  Google Scholar 

  46. [46]

    Ren, M. M.; Zhou, Z.; Li, Y. Z.; Gao, X. P.; Yan, J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J. Power Sources 2006, 162, 1357–1362.

    Article  Google Scholar 

  47. [47]

    Feng, Y. Y.; Ouyang, Y.; Peng, L.; Qiu, H. J.; Wang, H. L.; Wang, Y. Quasi-graphene-envelope Fe-doped Ni2P sandwiched nanocomposites for enhanced water splitting and lithium storage performance. J. Mater. Chem. A 2015, 3, 9587–9594.

    Article  Google Scholar 

  48. [48]

    Yan, J. Y.; Song, H. H.; Yang, S. B.; Yan, J. D.; Chen, X. H. Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries. Electrochim. Acta 2008, 53, 6351–6355.

    Article  Google Scholar 

  49. [49]

    Xu, Y.; Zhu, X.; Zhou, X.; Liu, X.; Liu, Y.; Dai, Z.; Bao, J. Ge nanoparticles encapsulated in nitrogen-doped reduced graphene oxide as an advanced anode material for lithium-ion batteries. J. Phys. Chem. C 2014, 118, 28502–28508.

    Article  Google Scholar 

  50. [50]

    Zhu, J. H.; Jiang, J.; Sun, Z. P.; Luo, J. S.; Fan, Z. X.; Huang, X. T.; Zhang, H.; Yu, T. 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors. Small 2014, 10, 2937–2945.

    Article  Google Scholar 

  51. [51]

    Xie, Y.; Su, H. L.; Qian, X. F.; Liu, X. M.; Qian, Y. T. A mild one-step solvothermal route to metal phosphides (metal = Co, Ni, Cu). J. Solid State Chem. 2000, 149, 88–91.

    Article  Google Scholar 

  52. [52]

    Su, H. L.; Xie, Y.; Li, B.; Liu, X. M.; Qian, Y. T. A simple, convenient, mild solvothermal route to nanocrystalline Cu3P and Ni2P. Solid State Ionics 1999, 122, 157–160.

    Article  Google Scholar 

  53. [53]

    Toprakci, O.; Ji, L. W.; Lin, Z.; Toprakci, H. A. K.; Zhang, X. W. Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. J. Power Sources 2011, 196, 7692–7699.

    Article  Google Scholar 

  54. [54]

    Lv, Z. J.; Zhong, Q.; Bu, Y. F. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property. Appl. Surf. Sci. 2018, 439, 413–419.

    Article  Google Scholar 

  55. [55]

    Pan, Y.; Yang, N.; Chen, Y. J.; Lin, Y.; Li, Y. P.; Liu, Y. Q.; Liu, C. G. Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity. J. Power Sources 2015, 297, 45–52.

    Article  Google Scholar 

  56. [56]

    Chen, G. F.; Ma, T. Y.; Liu, Z. Q.; Li, N.; Su, Y. Z.; Davey, K.; Qiao, S. Z. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 2016, 26, 3314–3323.

    Article  Google Scholar 

  57. [57]

    Mandel, K.; Dillon, F.; Koos, A. A.; Aslam, Z.; Jurkschat, K.; Cullen, F.; Crossley, A.; Bishop, H.; Moh, K.; Cavelius, C. et al. Facile, fast, and inexpensive synthesis of monodisperse amorphous nickel-phosphide nanoparticles of predefined size. Chem. Commun. 2011, 47, 4108–4110.

    Article  Google Scholar 

  58. [58]

    Chen, C.; Zhang, N.; He, Y. L.; Liang, B.; Ma, R. Z.; Liu, X. H. Controllable fabrication of amorphous Co-Ni pyrophosphates for tuning electrochemical performance in supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 23114–23121.

    Article  Google Scholar 

  59. [59]

    Carenco, S.; Surcin, C.; Morcrette, M.; Larcher, D.; Mézailles, N.; Boissière, C.; Sanchez, C. Improving the Li-electrochemical properties of monodisperse Ni2P nanoparticles by self-generated carbon coating. Chem. Mater. 2012, 24, 688–697.

    Article  Google Scholar 

  60. [60]

    Jaszewski, R. W.; Schift, H.; Schnyder, B.; Schneuwly, A.; Gröning, P. The deposition of anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing. Appl. Surf. Sci. 1999, 143, 301–308.

    Article  Google Scholar 

  61. [61]

    Zhao, Y. F.; Huang, S. F.; Xia, M. R.; Rehman, S.; Mu, S. C.; Kou, Z. K.; Zhang, Z.; Chen, Z. Y.; Gao, F. M.; Hou, Y. L. N–P–O co-doped high performance 3D graphene prepared through red phosphorous-assisted “cutting-thin” technique: A universal synthesis and multifunctional applications. Nano Energy, 2016, 28, 346–355.

    Article  Google Scholar 

  62. [62]

    Dong, X. C.; Su, C. Y.; Zhang, W. J.; Zhao, J. W.; Ling, Q. D.; Huang, W.; Chen, P.; Li, L. J. Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Phys. Chem. Chem. Phys. 2010, 12, 2164–2169.

    Article  Google Scholar 

  63. [63]

    Gao, X. T.; Zhu, X. D.; Le, S. R.; Yan, D. J.; Qu, C. Y.; Feng, Y. J.; Sun, K. N.; Liu, Y. T. Boosting high-rate lithium storage of V2O5 nanowires by self-assembly on N-doped graphene nanosheets. ChemElectroChem 2016, 3, 1730–1736.

    Article  Google Scholar 

  64. [64]

    Liu, D. S.; Liu, D. H.; Hou, B. H.; Wang, Y. Y.; Guo, J. Z.; Ning, Q. L.; Wu, X. L. 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim. Acta 2018, 264, 292–300.

    Google Scholar 

  65. [65]

    Tang, H.; Dou, K. P.; Kaun, C. C.; Kuang, Q.; Yang, S. H. MoSe2 nanosheets and their graphene hybrids: Synthesis, characterization and hydrogen evolution reaction studies. J. Mater. Chem. A 2014, 2, 360–364.

    Article  Google Scholar 

  66. [66]

    Jiang, H.; Ma, J.; Li, C. Z. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 2012, 24, 4197–4202.

    Article  Google Scholar 

  67. [67]

    Yang, Y.; Li, L.; Ruan, G. D.; Fei, H. L.; Xiang, C. S.; Fan, X. J.; Tour, J. M. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors. ACS Nano 2014, 8, 9622–9628.

    Article  Google Scholar 

  68. [68]

    Zhai, T.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Wang, G. M.; Liu, T. Y.; Liang, C. L.; Tong, Y. X.; Li, Y. A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O13–x. Adv. Mater. 2014, 26, 5869–5875.

    Article  Google Scholar 

  69. [69]

    Zhou, K.; Zhou, W. J.; Yang, L. J.; Lu, J.; Cheng, S.; Mai, W. J.; Tang, Z. H.; Li, L. G.; Chen, S. W. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach. Adv. Funct. Mater. 2015, 25, 7530–7538.

    Article  Google Scholar 

  70. [70]

    Wang, D.; Kong, L. B.; Liu, M. C.; Zhang, W. B.; Luo, Y. C.; Kang, L. Amorphous Ni–P materials for high performance pseudocapacitors. J. Power Sources 2015, 274, 1107–1113.

    Article  Google Scholar 

  71. [71]

    Zheng, Z.; Retana, M.; Hu, X. B.; Luna, R.; Ikuhara, Y. H.; Zhou, W. L. Three-dimensional cobalt phosphide nanowire arrays as negative electrode material for flexible solid-state asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 16986–16994.

    Article  Google Scholar 

  72. [72]

    Li, X.; Wu, H. J.; Elshahawy, A. M.; Wang, L.; Pennycook, S. J.; Guan, C.; Wang, J. Cactus-like NiCoP/NiCo-Oh 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 2018, 28, 1800036.

    Article  Google Scholar 

  73. [73]

    Liang, H. F.; Xia, C.; Jiang, Q.; Gandi, A. N.; Schwingenschlögl, U.; Alshareef, H. N. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. Nano Energy 2017, 35, 331–340.

    Article  Google Scholar 

  74. [74]

    Wang, S. L.; Huang, Z. C.; Li, R.; Zheng, X.; Lu, F. X.; He, T. B. Template-assisted synthesis of NiP@CoAl-LDH nanotube arrays with superior electrochemical performance for supercapacitors. Electrochim. Acta 2016, 204, 160–168.

    Article  Google Scholar 

  75. [75]

    Li, M. Y.; Wu, Y.; Zhao, F.; Wei, Y.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries. Carbon 2014, 69, 444–451.

    Article  Google Scholar 

  76. [76]

    Bai, Y. J.; Zhang, H. J.; Liu, L.; Xu, H. T.; Wang, Y. Tunable and specific formation of C@NiCoP peapods with enhanced her activity and lithium storage performance. Chem. -Eur. J. 2016, 22, 1021–1029.

    Article  Google Scholar 

  77. [77]

    Li, Q.; Ma, J. J.; Wang, H. J.; Yang, X.; Yuan, R.; Chai, Y. Q. Interconnected Ni2P nanorods grown on nickel foam for binder free lithium ion batteries. Electrochim. Acta 2016, 213, 201–206.

    Article  Google Scholar 

  78. [78]

    Zhang, Y.; Zhang, H. J.; Feng, Y. Y.; Liu, L.; Wang, Y. Unique Fe2P nanoparticles enveloped in sandwichlike graphited carbon sheets as excellent hydrogen evolution reaction catalyst and lithium-ion battery anode. ACS Appl. Mater. Interfaces 2015, 7, 26684–26690.

    Article  Google Scholar 

  79. [79]

    Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Adv. Mater. 2017, 29, 1604015.

    Article  Google Scholar 

  80. [80]

    Wang, B.; Al Abdulla, W.; Wang, D. L.; Zhao, X. S. A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ. Sci. 2015, 8, 869–875.

    Article  Google Scholar 

  81. [81]

    Lu, A. L.; Zhang, X. Q.; Chen, Y. Z.; Xie, Q. S.; Qi, Q. Q.; Ma, Y. T.; Peng, D. L. Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries. J. Power Sources 2015, 295, 329–335.

    Article  Google Scholar 

  82. [82]

    Wang, X.; Sun, P. P.; Qin, J. W.; Wang, J. Q.; Xiao, Y.; Cao, M. H. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. Nanoscale 2016, 8, 10330–10338.

    Article  Google Scholar 

  83. [83]

    Yang, D.; Zhu, J. X.; Rui, X. H.; Tan, H. T.; Cai, R.; Hoster, H. E.; Yu, D. Y. W.; Hng, H. H.; Yan, Q. Y. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 1093–1099.

    Article  Google Scholar 

  84. [84]

    Li, G. A.; Wang, C. Y.; Chang, W. C.; Tuan, H. Y. Phosphorus-rich copper phosphide nanowires for field-effect transistors and lithium-ion batteries. ACS Nano 2016, 10, 8632–8644.

    Article  Google Scholar 

  85. [85]

    Sun, L.; Zhang, Y.; Zhang, D. Y.; Zhang, Y. H. Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries. Nanoscale 2017, 9, 18552–18560.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities of China (Nos. 2652017401 and 2652015425) and the National Natural Science Foundation of China (No. 51572246).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Li Sun or Yihe Zhang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sun, L., Bai, L. et al. N-doped-carbon coated Ni2P-Ni sheets anchored on graphene with superior energy storage behavior. Nano Res. 12, 607–618 (2019). https://doi.org/10.1007/s12274-018-2265-8

Download citation

Keywords

  • nickel phosphide
  • graphene
  • nitrogen-doped carbon
  • asymmetric supercapacitors
  • lithium ion batteries