Skip to main content

Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy

Abstract

The capping agents for liquid metal (LM) nanodroplets in aqueous solutions are restricted to thiol-containing and positively-charged molecules or macromolecules. However, both thiolate-metal complex and electrostatic interaction are liable to detachment upon strong mechanical forces such as sonication, leading to limited stability and applications. To address this, we utilized ultrasmall water soluble melanin nanoparticles (MNPs) as the capping agent, which exhibited strong metal binding capability with the oxide layer of gallium based LMs and resulted in enhanced stability. Interestingly, shape-controlled synthesis of LM nanodroplets can be achieved by the incorporation of MNPs. Various EGaIn nanostructures including nanorice, nanosphere and nanorod were obtained by simply tuning the feed ratio, sonication time, and suspension temperature. Among these shapes, EGaIn nanorice has the best photothermal conversion efficiency, which could be leveraged for photothermal therapy.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

    Article  Google Scholar 

  2. [2]

    Ye, X. C.; Collins, J. E.; Kang, Y. J.; Chen, J.; Chen, D. T. N.; Yodh, A. G.; Murray, C. B. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl. Acad. Sci. USA 2010, 107, 22430–22435.

    Article  Google Scholar 

  3. [3]

    Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132–138.

    Article  Google Scholar 

  4. [4]

    Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.

    Article  Google Scholar 

  5. [5]

    Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.

    Article  Google Scholar 

  6. [6]

    Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.

    Article  Google Scholar 

  7. [7]

    Wang, Y. L.; Xia, Y. N. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 2004, 4, 2047–2050.

    Article  Google Scholar 

  8. [8]

    Merkel, T. J.; Herlihy, K. P.; Nunes, J.; Orgel, R. M.; Rolland, J. P.; DeSimone, J. M. Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 2010, 26, 13086–13096.

    Article  Google Scholar 

  9. [9]

    Sau, T. K.; Rogach, A. L. Complex-Shaped Metal Nanoparticles: Bottom-Up Syntheses and Applications; Wiley-VCH: Weinheim, 2012.

    Book  Google Scholar 

  10. [10]

    Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Bottom-up synthesis of gold octahedra with tailorable hollow features. J. Am. Chem. Soc. 2011, 133, 10414–10417.

    Article  Google Scholar 

  11. [11]

    Chung, S. W.; Ginger, D. S.; Morales, M. W.; Zhang, Z. F.; Chandrasekhar, V.; Ratner, M. A.; Mirkin, C. A. Top-down meets bottom-up: Dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits. Small 2005, 1, 64–69.

    Article  Google Scholar 

  12. [12]

    Kazem, N.; Hellebrekers, T.; Majidi, C. Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 2017, 29, 1605985.

    Article  Google Scholar 

  13. [13]

    Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 2017, 29, 1606425.

    Article  Google Scholar 

  14. [14]

    Wang, Q.; Yu, Y.; Liu, J. Preparations, characteristics and applications of the functional liquid metal materials. Adv. Eng. Mater. 2018, 20, 1700781.

    Article  Google Scholar 

  15. [15]

    Yan, J. J.; Lu, Y.; Chen, G. J.; Yang, M.; Gu, Z. Advances in liquid metals for biomedical applications. Chem. Soc. Rev. 2018, 47, 2518–2533.

    Article  Google Scholar 

  16. [16]

    Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C. et al. Gallium-rich Pd-Ga phases as supported liquid metal catalysts. Nat. Chem. 2017, 9, 862–867.

    Article  Google Scholar 

  17. [17]

    Lu, Y.; Hu, Q. Y.; Lin, Y. L.; Pacardo, D. B.; Wang, C.; Sun, W. J.; Ligler, F. S.; Dickey, M. D.; Gu, Z. Transformable liquid-metal nanomedicine. Nat. Commun. 2015, 6, 10066.

    Article  Google Scholar 

  18. [18]

    Hohman, J. N.; Kim, M.; Wadsworth, G. A.; Bednar, H. R.; Jiang, J.; LeThai, M. A.; Weiss, P. S. Directing substrate morphology via self-assembly: Ligand-mediated scission of gallium-indium microspheres to the nanoscale. Nano Lett. 2011, 11, 5104–5110.

    Article  Google Scholar 

  19. [19]

    Chechetka, S. A.; Yu, Y.; Zhen, X.; Pramanik, M.; Pu, K. Y.; Miyako, E. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat. Commun. 2017, 8, 15432.

    Article  Google Scholar 

  20. [20]

    Yamaguchi, A.; Mashima, Y.; Iyoda, T. Reversible size control of liquidmetal nanoparticles under ultrasonication. Angew. Chem., Int. Ed. 2015, 54, 12809–12813.

    Article  Google Scholar 

  21. [21]

    Ren, L.; Zhuang, J. C.; Casillas, G.; Feng, H. F.; Liu, Y. Q.; Xu, X.; Liu, Y. D.; Chen, J.; Du, Y.; Jiang, L. et al. Nanodroplets for stretchable superconducting circuits. Adv. Funct. Mater. 2016, 26, 8111–8118.

    Article  Google Scholar 

  22. [22]

    Lu, Y.; Lin, Y. L.; Chen, Z. W.; Hu, Q. Y.; Liu, Y.; Yu, S. J.; Gao, W.; Dickey, M. D.; Gu, Z. Enhanced endosomal escape by light-fueled liquid-metal transformer. Nano Lett. 2017, 17, 2138–2145.

    Article  Google Scholar 

  23. [23]

    Lin, Y. L.; Liu, Y.; Genzer, J.; Dickey, M. D. Shape-transformable liquid metal nanoparticles in aqueous solution. Chem. Sci. 2017, 8, 3832–3837.

    Article  Google Scholar 

  24. [24]

    Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)−thiolate complexes and thiolateprotected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

    Article  Google Scholar 

  25. [25]

    Sun, W. J.; Hu, Q. Y.; Ji, W. Y.; Wright, G.; Gu, Z. Leveraging physiology for precision drug delivery. Physiol. Rev. 2017, 97, 189–225.

    Article  Google Scholar 

  26. [26]

    Miljevic, B.; Hedayat, F.; Stevanovic, S.; Fairfull-Smith, K. E.; Bottle, S. E.; Ristovski, Z. D. To sonicate or not to sonicate pm filters: Reactive oxygen species generation upon ultrasonic irradiation. Aerosol Sci. Technol. 2014, 48, 1276–1284.

    Article  Google Scholar 

  27. [27]

    Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

    Article  Google Scholar 

  28. [28]

    Li, S. C.; Chu, L. N.; Gong, X. Q.; Diebold, U. Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2(110) surface. Science 2010, 328, 882–884.

    Article  Google Scholar 

  29. [29]

    Fan, Q. L.; Cheng, K.; Hu, X.; Ma, X. W.; Zhang, R. P.; Yang, M.; Lu, X. M.; Xing, L.; Huang, W.; Gambhir, S. S. et al. Transferring biomarker into molecular probe: Melanin nanoparticle as a naturally active platform for multimodality imaging. J. Am. Chem. Soc. 2014, 136, 15185–15194.

    Article  Google Scholar 

  30. [30]

    Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.

    Article  Google Scholar 

  31. [31]

    Lal, S.; Clare, S. E.; Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008, 41, 1842–1851.

    Article  Google Scholar 

  32. [32]

    Lyu, Y.; Fang, Y.; Miao, Q. Q.; Zhen, X.; Ding, D.; Pu, K. Y. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 2016, 10, 4472–4481.

    Article  Google Scholar 

  33. [33]

    Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324–332.

    Article  Google Scholar 

  34. [34]

    Zhang, Y. M.; Hong, H.; Sun, B. Y.; Carter, K.; Qin, Y. R.; Wei, W.; Wang, D. P.; Jeon, M.; Geng, J. M.; Nickles, R. J. et al. Surfactant-stripped naphthalocyanines for multimodal tumor theranostics with upconversion guidance cream. Nanoscale 2017, 9, 3391–3398.

    Article  Google Scholar 

  35. [35]

    Mackey, M. A.; Ali, M. R. K.; Austin, L. A.; Near, R. D.; El-Sayed, M. A. The most effective gold nanorod size for plasmonic photothermal therapy: Theory and in vitro experiments. J. Phys. Chem. B 2014, 118, 1319–1326.

    Article  Google Scholar 

  36. [36]

    Yang, M.; Fan, Q. L.; Zhang, R. P.; Cheng, K.; Yan, J. J.; Pan, D. H.; Ma, X. W.; Lu, A.; Cheng, Z. Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging. Biomaterials 2015, 69, 30–37.

    Article  Google Scholar 

  37. [37]

    Yan, J. J.; Ji, Y.; Zhang, P. J.; Lu, X. M.; Fan, Q. L.; Pan, D. H.; Yang, R. L.; Xu, Y. P.; Wang, L. Z.; Zhang, L. et al. Melanin nanoparticles as an endogenous agent for efficient iron overload therapy. J. Mater. Chem. B 2016, 4, 7233–7240.

    Article  Google Scholar 

  38. [38]

    Hudson, Z. M.; Boott, C. E.; Robinson, M. E.; Rupar, P. A.; Winnik, M. A.; Manners, I. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 2014, 6, 893–898.

    Article  Google Scholar 

  39. [39]

    Wang, J.; Zhu, W.; Peng, B.; Chen, Y. M. A facile way to prepare crystalline platelets of block copolymers by crystallization-driven self-assembly. Polymer 2013, 54, 6760–6767.

    Article  Google Scholar 

  40. [40]

    Zhou, Y.; Yan, B.; He, X. H. Controlled synthesis and up/down-conversion luminescence of self-assembled hierarchical architectures of monoclinic AgRE(WO4)2: Ln3+ (RE = Y, La, Gd, Lu; Ln = Eu, Tb, Sm, Dy, Yb/Er, Yb/Tm). J. Mater. Chem. C 2014, 2, 848–855.

    Article  Google Scholar 

  41. [41]

    Rebolledo, A. F.; Bomatí-Miguel, O.; Marco, J. F.; Tartaj, P. A facile synthetic route for the preparation of superparamagnetic iron oxide nanorods and nanorices with tunable surface functionality. Adv. Mater. 2008, 20, 1760–1765.

    Article  Google Scholar 

  42. [42]

    Wang, H.; Brandl, D. W.; Le, F.; Nordlander, P.; Halas, N. J. Nanorice: A hybrid plasmonic nanostructure. Nano Lett. 2006, 6, 827–832.

    Article  Google Scholar 

  43. [43]

    Parasuraman, P. S.; Tsai, H. C.; Imae, T. In-situ hydrothermal synthesis of carbon nanorice using nafion as a template. Carbon 2014, 77, 660–666.

    Article  Google Scholar 

  44. [44]

    Hoshyargar, F.; Crawford, J.; O’Mullane, A. P. Galvanic replacement of the liquid metal Galinstan. J. Am. Chem. Soc. 2017, 139, 1464–1471.

    Article  Google Scholar 

  45. [45]

    Glass, K.; Ito, S.; Wilby, P. R.; Sota, T.; Nakamura, A.; Bowers, C. R.; Vinther, J.; Dutta, S.; Summons, R.; Briggs, D. E. G. et al. Direct chemical evidence for Eumelanin pigment from the Jurassic period. Proc. Natl. Acad. Sci. USA 2012, 109, 10218–10223.

    Article  Google Scholar 

  46. [46]

    Mbonyiryivuze, A.; Mwakikunga, B.; Dhlamini, S. M.; Maaza, M. Fourier transform infrared spectroscopy for sepia melanin. Phys. Mater. Chem. 2015, 3, 25–29.

    Google Scholar 

  47. [47]

    Zangmeister, R. A.; Morris, T. A.; Tarlov, M. J. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 2013, 29, 8619–8628.

    Article  Google Scholar 

  48. [48]

    Tas, A. C.; Majewski, P. J.; Aldinger, F. Synthesis of gallium oxide hydroxide crystals in aqueous solutions with or without urea and their calcination behavior. J. Am. Ceram. Soc. 2002, 85, 1421–1429.

    Article  Google Scholar 

  49. [49]

    Bronze-Uhle, E. S.; Paulin, J. V.; Piacenti-Silva, M.; Battocchio, C.; Rocco, M. L. M.; de Oliveira Graeff, C. F. Melanin synthesis under oxygen pressure. Polym. Int. 2016, 65, 1339–1346.

    Article  Google Scholar 

  50. [50]

    Rajh, T.; Chen, L. X.; Lukas, K.; Liu, T.; Thurnauer, M. C.; Tiede, D. M. Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. J. Phys. Chem. B 2002, 106, 10543–10552.

    Article  Google Scholar 

  51. [51]

    Huang, C. C.; Yeh, C. S.; Ho, C. J. Laser ablation synthesis of spindle-like gallium oxide hydroxide nanoparticles with the presence of cationic cetyltrimethylammonium bromide. J. Phys. Chem. B 2004, 108, 4940–4945.

    Article  Google Scholar 

  52. [52]

    Rao, W.; Liu, J. Injectable liquid alkali alloy based-tumor thermal ablation therapy. Minim. Invasive Ther. Allied Technol. 2009, 18, 30–35.

    Article  Google Scholar 

  53. [53]

    Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410–10488.

    Article  Google Scholar 

  54. [54]

    Ye, Y. Q.; Wang, C.; Zhang, X. D.; Hu, Q. Y.; Zhang, Y. Q.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L. et al. A melanin-mediated cancer immunotherapy patch. Sci. Immunol. 2017, 2, eaan5692.

    Article  Google Scholar 

  55. [55]

    Zhang, L.; Sheng, D. L.; Wang, D.; Yao, Y. Z.; Yang, K.; Wang, Z. G.; Deng, L. M.; Chen, Y. Bioinspired multifunctional melanin-based nanoliposome for photoacoustic/magnetic resonance imaging-guided efficient photothermal ablation of cancer. Theranostics 2018, 8, 1591–1606.

    Article  Google Scholar 

  56. [56]

    Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

    Article  Google Scholar 

  57. [57]

    Huang, H. C.; Rege, K.; Heys, J. J. Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. ACS Nano 2010, 4, 2892–2900.

    Article  Google Scholar 

  58. [58]

    Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

    Article  Google Scholar 

  59. [59]

    Ahmed, M.; Brace, C. L.; Lee, F. T.; Goldberg, S. N. Principles of and advances in percutaneous ablation. Radiology 2011, 258, 351–369.

    Article  Google Scholar 

  60. [60]

    Yu, J. C.; Zhang, Y. Q.; Ye, Y. Q.; DiSanto, R.; Sun, W. J.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA 2015, 112, 8260–8265.

    Article  Google Scholar 

  61. [61]

    Willcock, H.; Lu, A.; Hansell, C. F.; Chapman, E.; Collins, I. R.; O’Reilly, R. K. One-pot synthesis of responsive sulfobetaine nanoparticles by RAFT polymerisation: The effect of branching on the UCST cloud point. Polym. Chem. 2014, 5, 1023–1030.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the Alfred P. Sloan Foundation (Sloan Research Fellowship), the National Natural Science Foundation of China (Nos. 21504034, 31671035, and 51473071), the National Key Research and Development Program of China (No. 2017ZX09304021), the Jiangsu Provincial Medical Innovation Team (No. CXTDA2017024), and Natural Science Foundation of Jiangsu Province (Nos. BK20161137, BK20170204, and BE2016632). This work was performed in part at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (award number ECCS-1542015). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Min Yang or Zhen Gu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Zhang, X., Liu, Y. et al. Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Res. 12, 1313–1320 (2019). https://doi.org/10.1007/s12274-018-2262-y

Download citation

Keywords

  • liquid metal
  • melanin nanoparticles
  • nanomedicine
  • shape-controlled synthesis
  • photothermal therapy