Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode


Lithium metal anode for batteries has attracted extensive attentions, but its application is restricted by the hazardous dendritic Li growth and dead Li formation. To address these issues, a novel Li anode is developed by infiltrating molten Li metal into conductive carbon cloth decorated with zinc oxide arrays. In carbonate-based electrolyte, the symmetric cell shows no short circuit over 1,500 h at 1 mA·cm−2, and stable voltage profiles at 3 mA·cm−2 for ∼ 300 h cycling. A low overpotential of ∼ 243 mV over 350 cycles at a high current density of 10 mA·cm−2 is achieved, compared to the seriously fluctuated voltage and fast short circuit in the cell using bare Li metal. Meanwhile, the asymmetric cell withstands 1,000 cycles at 10 C (1 C = 167 mAh·g−1) compared to the 210 cycles for the cell using bare Li anode. The excellent performance is attributed to the well-regulated Li plating/stripping driven from the formation of LiZn alloy on the wavy carbon fibers, resulting in the suppression of dendrite growth and pulverization of the Li electrode during cycling.

This is a preview of subscription content, log in to check access.


  1. [1]

    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.

    Article  Google Scholar 

  2. [2]

    Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

    Article  Google Scholar 

  3. [3]

    Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    Article  Google Scholar 

  4. [4]

    Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    Article  Google Scholar 

  5. [5]

    Wang, D.; Zhang, W.; Zheng, W. T.; Cui, X. Q.; Rojo, T.; Zhang, Q. Towards high-safe lithium metal anodes: Suppressing lithium dendrites via tuning surface energy. Adv. Sci. 2017, 4, 1600168.

    Article  Google Scholar 

  6. [6]

    Lin, D. C.; Liu, Y. Y.; Pei, A.; Cui, Y. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res. 2017, 10, 4003–4026.

    Article  Google Scholar 

  7. [7]

    Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Reviving lithium-metal anodes for nextgeneration high-energy batteries. Adv. Mater. 2017, 29, 1700007.

    Article  Google Scholar 

  8. [8]

    Li, N.; Wei, W. F.; Xie, K. Y.; Tan, J. W.; Zhang, L.; Luo, X. D.; Yuan, K.; Song, Q.; Li, H. J.; Shen, C. et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries. Nano Lett. 2018, 18, 2067–2073.

    Article  Google Scholar 

  9. [9]

    Zhang, K.; Lee, G. H.; Park, M.; Li, W. J.; Kang, Y. M. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv. Energy Mater. 2016, 6, 1600811.

    Article  Google Scholar 

  10. [10]

    Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

    Article  Google Scholar 

  11. [11]

    Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

    Article  Google Scholar 

  12. [12]

    Xin, S.; Chang, Z. W.; Zhang, X. B.; Guo, Y. G. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl. Sci. Rev. 2017, 4, 54–70.

    Google Scholar 

  13. [13]

    Song, Q.; Yan, H. B.; Liu, K. D.; Xie, K. Y.; Li, W.; Gai, W. H.; Chen, G. H.; Li, H. J.; Shen, C.; Fu, Q. G. et al. Vertically grown edge-rich graphene nanosheets for spatial control of Li nucleation. Adv. Energy Mater. 2018, 8, 1800564.

    Article  Google Scholar 

  14. [14]

    Yan, K.; Lee, H. W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016–6022.

    Article  Google Scholar 

  15. [15]

    Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

    Article  Google Scholar 

  16. [16]

    Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for highenergy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    Article  Google Scholar 

  17. [17]

    Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 2016, 28, 2155–2162.

    Article  Google Scholar 

  18. [18]

    Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431–4437.

    Article  Google Scholar 

  19. [19]

    Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

    Article  Google Scholar 

  20. [20]

    Ye, H.; Xin, S.; Yin, Y. X.; Li, J. Y.; Guo, Y. G.; Wan, L. J. Stable Li plating/ stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J. Am. Chem. Soc. 2017, 139, 5916–5922.

    Article  Google Scholar 

  21. [21]

    Jin, C. B.; Sheng, O. W.; Luo, J. M.; Yuan, H. D.; Fang, C.; Zhang, W. K.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C. et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 2017, 37, 177–186.

    Article  Google Scholar 

  22. [22]

    Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

    Article  Google Scholar 

  23. [23]

    Zuo, T. T.; Wu, X. W.; Yang, C. P.; Yin, Y. X.; Ye, H.; Li, N. W.; Guo, Y. G. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 2017, 29, 1700389.

    Article  Google Scholar 

  24. [24]

    Raji, A. R. O.; Villegas Salvatierra, R.; Kim, N. D.; Fan, X. J.; Li, Y. L.; Silva, G. A. L.; Sha, J. W.; Tour, J. M. Lithium batteries with nearly maximum metal storage. ACS Nano 2017, 11, 6362–6369.

    Article  Google Scholar 

  25. [25]

    Wang, X. S.; Pan, Z. H.; Wu, Y.; Xu, G. G.; Zheng, X. W.; Qiu, Y. C.; Liu, M. N.; Zhang, Y. G.; Li, W. S. Reducing lithium deposition overpotential with silver nanocrystals anchored on graphene aerogel. Nanoscale 2018, 10, 16562–16567.

    Article  Google Scholar 

  26. [26]

    Liu, W.; Li, W. Y.; Zhuo, D.; Zheng, G. Y.; Lu, Z. D.; Liu, K.; Cui, Y. Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes. ACS Cent. Sci. 2017, 3, 135–140.

    Article  Google Scholar 

  27. [27]

    Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

    Article  Google Scholar 

  28. [28]

    Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356–1365.

    Article  Google Scholar 

  29. [29]

    Liang, Z.; Lin, D. C.; Zhao, J.; Lu, Z. D.; Liu, Y. Y.; Liu, C.; Lu, Y. Y.; Wang, H. T.; Yan, K.; Tao, X. Y. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. USA 2016, 113, 2862–2867.

    Article  Google Scholar 

  30. [30]

    Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

    Article  Google Scholar 

  31. [31]

    Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

    Article  Google Scholar 

  32. [32]

    Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

    Article  Google Scholar 

  33. [33]

    Zhang, Y.; Luo, W.; Wang, C. W.; Li, Y. J.; Chen, C. J.; Song, J. W.; Dai, J. Q.; Hitz, E. M.; Xu, S. M.; Yang, C. P. et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl. Acad. Sci. USA 2017, 114, 3584–3589.

    Article  Google Scholar 

  34. [34]

    Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

    Article  Google Scholar 

  35. [35]

    Wang, C. W.; Gong, Y. H.; Liu, B. Y.; Fu, K.; Yao, Y. G.; Hitz, E.; Li, Y. J.; Dai, J. Q.; Xu, S. M.; Luo, W. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017, 17, 565–571.

    Article  Google Scholar 

  36. [36]

    Fu, K.; Gong, Y. H.; Liu, B. Y.; Zhu, Y. Z.; Xu, S. M.; Yao, Y. G.; Luo, W.; Wang, C. W.; Lacey S. D.; Dai, J. Q. et al. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 2017, 3, e1601659.

    Article  Google Scholar 

  37. [37]

    Deng, W.; Zhou, X. F.; Fang, Q. L.; Liu, Z. P. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes. Adv. Energy Mater. 2018, 8, 1703152.

    Article  Google Scholar 

  38. [38]

    He, S. S.; Qiu, L. B.; Fang, X.; Guan, G. Z.; Chen, P. N.; Zhang, Z. T.; Peng, H. S. Radically grown obelisk-like ZnO arrays for perovskite solar cell fibers and fabrics through a mild solution process. J. Mater. Chem. A 2015, 3, 9406–9410.

    Article  Google Scholar 

  39. [39]

    Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. D. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 2005, 5, 1231–1236.

    Article  Google Scholar 

  40. [40]

    Yi, S. H.; Choi, S. K.; Jang, J. M.; Kim, J. A.; Jung, W. G. Low-temperature growth of ZnO nanorods by chemical bath deposition. J. Colloid Interface Sci. 2007, 313, 705–710.

    Article  Google Scholar 

  41. [41]

    Li, Q.; Zhu, S. P.; Lu, Y. Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 2017, 27, 1606422.

    Article  Google Scholar 

  42. [42]

    Bieker, G.; Winter, M.; Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 2015, 17, 8670–8679.

    Article  Google Scholar 

  43. [43]

    Li, N. W.; Yin, Y. X.; Li, J. Y.; Zhang, C. H.; Guo, Y. G. Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping. Adv. Sci. 2017, 4, 1600400.

    Article  Google Scholar 

  44. [44]

    Heine, J.; Krüger, S.; Hartnig, C.; Wietelmann, U.; Winter, M.; Bieker, P. Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv. Energy Mater. 2014, 4, 1300815.

    Article  Google Scholar 

  45. [45]

    Hafez, A. M.; Jiao, Y. C.; Shi, J. J.; Ma, Y.; Cao, D. X.; Liu, Y. Y.; Zhu, H. L. Stable metal anode enabled by porous lithium foam with superior ion accessibility. Adv. Mater. 2018, 30, 1802156.

    Article  Google Scholar 

  46. [46]

    Liu, S. F.; Xia, X. H.; Yao, Z. J.; Wu, J. B.; Zhang, L. Y.; Deng, S. J.; Zhou, C. G.; Shen, S. H.; Wang, X. L.; Tu, J. P. Straw-brick-like carbon fiber cloth/lithium composite electrode as an advanced lithium metal anode. Small Methods 2018, 2, 1800035.

    Article  Google Scholar 

  47. [47]

    Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

    Article  Google Scholar 

  48. [48]

    Yamaki, J. I.; Tobishima, S. I.; Hayashi K.; Saito, K.; Nemoto, Y.; Arakawa, M. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 1998, 74, 219–227.

    Article  Google Scholar 

  49. [49]

    Lu, Y. Y.; Tu, Z. Y.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961–969.

    Article  Google Scholar 

Download references


This work is financially supported by the National Key Research and Development Program of China (Nos. 2016YFB0100100 and 2018YFB0104000), the Key Project of Science and Technology in Guangdong Province (No. 2017A010106006), and the National Natural Science Foundation of China (Nos. 21433013 and 51471073).

Author information



Corresponding authors

Correspondence to Yuegang Zhang or Weishan Li.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Pan, Z., Wu, Y. et al. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Res. 12, 525–529 (2019).

Download citation


  • lithium metal anodes
  • lithium plating/stripping
  • dendrite-free
  • thermal infiltration
  • carbon cloth
  • zinc oxide nanowire arrays