Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker


Detection of enzyme biomarkers originating from either bio-fluids or contaminating microorganisms is of utmost importance in clinical diagnostics and food safety. Herein, we present a simple, low-cost and easy-to-use sensing approach based on the switchable peroxidase-mimicking activity of plasmonic gold nanoparticles (AuNPs) that can catalyse for the oxidation of 3,3’,5’5-tetramethylbenzidine (TMB) for the determination of protease enzyme. The AuNP surface is modified with casein, showing dual functionalities. The first function of the coating molecule is to suppress the intrinsic peroxidase-mimicking activity of AuNPs by up to 77.1%, due to surface shielding effects. Secondly, casein also functions as recognition sites for the enzyme biomarker. In the presence of protease, the enzyme binds to and catalyses the degradation of the coating layer on the AuNP surface, resulting in the recovery of peroxidase-mimicking activity. This is shown visually in the development of a blue colored product (oxidised TMB) or spectroscopically as an increase in absorbance at 370 and 650 nm. This mechanism allows for the detection of protease at 44 ng·mL−1 in 90 min. The nanosensor circumvents issues associated with current methods of detection in terms of ease of use, compatibility with point-of-care testing, low-cost production and short analysis time. The sensing approach has also been applied for the detection of protease spiked in ultra-heat treated (UHT) milk and synthetic human urine samples at a limit of detection of 490 and 176 ng·mL−1, respectively, showing great potential in clinical diagnostics, food safety and quality control.


  1. [1]

    Meisner, M. Biomarkers of sepsis: Clinically useful? Curr. Opin. Crit. Care 2005, 11, 473–480.

    Article  Google Scholar 

  2. [2]

    Eckersall, P. D.; Bell, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010, 185, 23–27.

    Article  Google Scholar 

  3. [3]

    Fadda, S.; López, C.; Vignolo, G. Role of lactic acid bacteria during meat conditioning and fermentation: Peptides generated as sensorial and hygienic biomarkers. Meat Sci. 2010, 86, 66–79.

    Article  Google Scholar 

  4. [4]

    Ossovskaya, V. S.; Bunnett, N. W. Protease-activated receptors: Contribution to physiology and disease. Physiol. Rev. 2004, 84, 579–621.

    Article  Google Scholar 

  5. [5]

    Otlewski, J.; Jelen, F.; Zakrzewska, M.; Oleksy, A. The many faces of protease–protein inhibitor interaction. EMBO J. 2005, 24, 1303–1310.

    Article  Google Scholar 

  6. [6]

    Zhang, S. G.; Janciauskiene, S. Multi-functional capability of proteins: a1- antichymotrypsin and the correlation with Alzheimer’s disease. J. Alzheimers Dis. 2002, 4, 115–122.

    Article  Google Scholar 

  7. [7]

    Chen, J.; Li, L.; Chin, L. S. Parkinson disease protein DJ-1 converts from a zymogen to a protease by carboxyl-terminal cleavage. Hum. Mol. Genet. 2010, 19, 2395–2408.

    Article  Google Scholar 

  8. [8]

    Travis, J.; Pike, R.; Imamura, T.; Potempa, J. The role of proteolytic enzymes in the development of pulmonary emphysema and periodontal disease. Am. J. Respir. Crit. Care Med. 1994, 150, S143–S146.

    Article  Google Scholar 

  9. [9]

    Singh, R. B.; Dandekar, S. P.; Elimban, V.; Gupta, S. K.; Dhalla, N. S. Role of proteases in the pathophysiology of cardiac disease. Mol. Cell. Biochem. 2004, 263, 241–256.

    Article  Google Scholar 

  10. [10]

    Medcalf, R. L. Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J. Thromb. Haemost. 2007, 5, 132–142.

    Article  Google Scholar 

  11. [11]

    Arora, P.; Ricks, T. K.; Trejo, J. Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. J. Cell Sci. 2007, 120, 921–928.

    Article  Google Scholar 

  12. [12]

    Quirós, P. M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2005, 16, 345–359.

    Article  Google Scholar 

  13. [13]

    Musante, L.; Tataruch, D.; Gu, D. F.; Liu, X. Y.; Forsblom, C.; Groop, P. H.; Holthofer, H. Proteases and protease inhibitors of urinary extracellular vesicles in diabetic nephropathy. J. Diabetes Res. 2015, 2015, 289734.

    Article  Google Scholar 

  14. [14]

    Edgington-Mitchell, L. E. Pathophysiological roles of proteases in gastrointestinal disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G234–G239.

    Article  Google Scholar 

  15. [15]

    McCarty, S. M.; Cochrane, C. A.; Clegg, P. D.; Percival, S. L. The role of endogenous and exogenous enzymes in chronic wounds: A focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair Regen. 2012, 20, 125–136.

    Article  Google Scholar 

  16. [16]

    Koop, G.; van Werven, T.; Roffel, S.; Hogeveen, H.; Nazmi, K.; Bikker, F. J. Protease activity measurement in milk as a diagnostic test for clinical mastitis in dairy cows. J. Dairy Sci. 2015, 98, 4613–4618.

    Article  Google Scholar 

  17. [17]

    Huis in’t Veld, J. H. J. Microbial and biochemical spoilage of foods: An overview. Int. J. Food Microbiol. 1996, 33, 1–18.

    Article  Google Scholar 

  18. [18]

    Shen, J. J.; Person, M. D.; Zhu, J. J.; Abbruzzese, J. L.; Li, D. H. Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res. 2004, 64, 9018–9026.

    Article  Google Scholar 

  19. [19]

    Wang, G. K.; Zhu, J. Q.; Zhang, J. T.; Li, Q.; Li, Y.; He, J.; Qin, Y. W.; Jing, Q. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur. Heart J. 2010, 31, 659–666.

    Article  Google Scholar 

  20. [20]

    Rissin, D. M.; Kan, C. W.; Campbell, T. G.; Howes, S. C.; Fournier, D. R.; Song, L. N.; Piech, T.; Patel, P. P.; Chang, L.; Rivnak, A. J. et al. Singlemolecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28, 595–599.

    Article  Google Scholar 

  21. [21]

    Liao, H.; Wu, J.; Kuhn, E.; Chin, W.; Chang, B.; Jones, M. D.; O'Neil, S.; Clauser, K. R.; Karl, J.; Hasler, F. et al. Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis. Arthritis Rheum. 2004, 50, 3792–3803.

    Article  Google Scholar 

  22. [22]

    Lee, G.; Eom, K.; Park, J.; Yang, J.; Haam, S.; Huh, Y. M.; Ryu, J. K.; Kim, N. H.; Yook, J. I.; Lee, S. W. et al. Real-time quantitative monitoring of specific peptide cleavage by a proteinase for cancer diagnosis. Angew. Chem. 2012, 124, 5939–5943.

    Article  Google Scholar 

  23. [23]

    Shi, L. F.; De Paoli, V.; Rosenzweig, N.; Rosenzweig, Z. Synthesis and application of quantum dots FRET-based protease sensors. J. Am. Chem. Soc. 2006, 128, 10378–10379.

    Article  Google Scholar 

  24. [24]

    Chen, G. C.; Xie, Y. S.; Zhang, H. T.; Wang, P.; Cheung, H. Y.; Yang, M. S.; Sun, H. Y. A general colorimetric method for detecting protease activity based on peptide-induced gold nanoparticle aggregation. RSC Adv. 2014, 4, 6560–6563.

    Article  Google Scholar 

  25. [25]

    Park, S. Y.; Lee, S. M.; Kim, G. B.; Kim, Y. P. Gold nanoparticle-based fluorescence quenching via metal coordination for assaying protease activity. Gold Bull. 2012, 45, 213–219.

    Article  Google Scholar 

  26. [26]

    Ingram, A.; Byers, L.; Faulds, K.; Moore, B. D.; Graham, D. SERRS-based enzymatic probes for the detection of protease activity. J. Am. Chem. Soc. 2008, 130, 11846–11847.

    Article  Google Scholar 

  27. [27]

    Tseng, C. W.; Chang, H. Y.; Chang, J. Y.; Huang, C. C. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/ gold nanoparticles. Nanoscale 2012, 4, 6823–6830.

    Article  Google Scholar 

  28. [28]

    Kim, S. H.; Park, M. K.; Kim, J. Y.; Chuong, P. D.; Lee, Y. S.; Yoon, B. S.; Hwang, K. K.; Lim, Y. K. Development of a sandwich ELISA for the detection of Listeria spp. using specific flagella antibodies. J. Vet. Sci. 2005, 6, 41–46.

    Google Scholar 

  29. [29]

    Hvolbæk, B.; Janssens, T. V. W.; Clausen, B. S.; Falsig, H.; Christensen, C. H.; Nørskov, J. K. Catalytic activity of Au nanoparticles. Nano Today 2007, 2, 14–18.

    Article  Google Scholar 

  30. [30]

    Deng, H. H.; Weng, S. H.; Huang, S. L.; Zhang, L. N.; Liu, A. L.; Lin, X. H.; Chen, W. Colorimetric detection of sulfide based on target-induced shielding against the peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 2014, 852, 218–222.

    Article  Google Scholar 

  31. [31]

    Zhao, D.; Chen, C. X.; Lu, L. X.; Yang, F.; Yang, X. R. A label-free colorimetric sensor for sulfate based on the inhibition of peroxidase-like activity of cysteamine-modified gold nanoparticles. Sens. Actuators B Chem. 2015, 215, 437–444.

    Article  Google Scholar 

  32. [32]

    Hizir, M. S.; Top, M.; Balcioglu, M.; Rana, M.; Robertson, N. M.; Shen, F. F.; Sheng, J.; Yigit, M. V. Multiplexed activity of perAuxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal. Chem. 2016, 88, 600–605.

    Article  Google Scholar 

  33. [33]

    Shah, J.; Purohit, R.; Singh, R.; Karakoti, A. S.; Singh, S. ATP-enhanced peroxidase-like activity of gold nanoparticles. J. Colloid Interface Sci. 2015, 456, 100–107.

    Article  Google Scholar 

  34. [34]

    Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.

    Article  Google Scholar 

  35. [35]

    Haddadi, K.; Moussaoui, F.; Hebia, I.; Laurent, F.; Le Roux, Y. E. coli proteolytic activity in milk and casein breakdown. Reprod. Nutr. Dev. 2005, 45, 485–496.

    Article  Google Scholar 

  36. [36]

    Cupp-Enyard, C. Use of the protease fluorescent detection kit to determine protease activity. J. Vis. Exp. 2009, 30, e1514.

    Google Scholar 

  37. [37]

    Bellino, M. G.; Calvo, E. J.; Gordillo, G. Adsorption kinetics of charged thiols on gold nanoparticles. Phys. Chem. Chem. Phys. 2004, 6, 424–428.

    Article  Google Scholar 

  38. [38]

    Liu, Y.; Liu, L. L.; Yuan, M.; Guo, R. Preparation and characterization of casein-stabilized gold nanoparticles for catalytic applications. Colloids Surf. A Physicochem. Eng. Aspects 2013, 417, 18–25.

    Article  Google Scholar 

  39. [39]

    Liu, Y.; Guo, R. pH-dependent structures and properties of casein micelles. Biophys. Chem. 2008, 136, 67–73.

    Article  Google Scholar 

  40. [40]

    Wang, S.; Chen, W.; Liu, A. L.; Hong, L.; Deng, H. H.; Lin, X. H. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 2012, 13, 1199–1204.

    Article  Google Scholar 

  41. [41]

    Arnao, M. B.; Acosta, M.; Del Rio, J. A.; García-Canovás, F. Inactivation of peroxidase by hydrogen peroxide and its protection by a reductant agent. Biochim. Biophys. Acta 1990, 1038, 85–89.

    Article  Google Scholar 

  42. [42]

    Drozd, M.; Pietrzak, M.; Parzuchowski, P. G.; Malinowska, E. Pitfalls and capabilities of various hydrogen donors in evaluation of peroxidase-like activity of gold nanoparticles. Anal. Bioanal. Chem. 2016, 408, 8505–8513.

    Article  Google Scholar 

  43. [43]

    Chuang, Y. C.; Li, J. C.; Chen, S. H.; Liu, T. Y.; Kuo, C. H.; Huang, W. T.; Lin, C. S. An optical biosensing platform for proteinase activity using gold nanoparticles. Biomaterials 2010, 31, 6087–6095.

    Article  Google Scholar 

  44. [44]

    Laromaine, A.; Koh, L.; Murugesan, M.; Ulijn, R. V.; Stevens, M. M. Protease-triggered dispersion of nanoparticle assemblies. J. Am. Chem. Soc. 2007, 129, 4156–4157.

    Article  Google Scholar 

  45. [45]

    Guarise, C.; Pasquato, L.; De Filippis, V.; Scrimin, P. Gold nanoparticlesbased protease assay. Proc. Natl. Acad. Sci. USA 2006, 103, 3978–3982.

    Article  Google Scholar 

  46. [46]

    Richardson, B. C.; Pearce, K. N. The determination of plasmin in dairy products. N. Z. J. Dairy Sci. Technol. 1981, 16, 209–220.

    Google Scholar 

  47. [47]

    Politis, I.; Hang, K. F. N. K.; Giroux, R. N. Environmental factors affecting plasmin activity in milk. J. Dairy Sc. 1989, 72, 1713–1718.

    Article  Google Scholar 

  48. [48]

    Buhl, K. B.; Oxlund, C. S.; Friis, U. G.; Svenningsen, P.; Bistrup, C.; Jacobsen, I. A.; Jensen, B. L. Plasmin in urine from patients with type 2 diabetes and treatment-resistant hypertension activates ENaC in vitro. J. Hypertens. 2014, 32, 1672–1677.

    Article  Google Scholar 

Download references


The author C. M. and N. L. thank the PhD studentship support from the Department of Employment and Learning for Northern Ireland (DEL); C. C. thanks the strong support from the Central Research Support Funds of Queen’s University Belfast via a start-up grant, the support from the Agri-Food Quest Competence Centre R&D funding programme sponsored by Invest Northern Ireland Agency (Invest NI), and the support from the Queen’s University of Belfast AMR Network (QUBAN) sponsored by the UK’s Engineering and Physical Sciences Research Council (EPSRC).

Author information



Corresponding author

Correspondence to Cuong Cao.

Additional information

This article is published with open access at link.springer.com

Electronic supplementary material

Rights and permissions

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McVey, C., Logan, N., Thanh, N.T.K. et al. Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 12, 509–516 (2019). https://doi.org/10.1007/s12274-018-2241-3

Download citation


  • gold nanoparticles
  • peroxidase-mimicking
  • nanozyme
  • enzyme detection
  • biomarkers