Polychromic carbon black: Laser galvanized multicolour fluorescence display

Abstract

Recovered carbon black (rCB), a very economical and abundance source of material, is transformed into dazzling multicolour fluorescence and visual display for the first time by way of a scanning focused laser treatment. This laser-initiated process is both straightforward and versatile, catering to both micro- and macro-scopic patterning with the sample in ambient or helium environment. The observed phenomenon is attributed to both chemical and structural induced colouration of rCB powder. Chemically, carbon infusion of oxidised metal occurs when photothermal reaction takes place in ambient. After laser modification with the sample in helium environment, the powder not only fluoresces due to sulphur impurities, control annealing of these powders results in formation of periodic arrangements of carbon nanoparticles. The periodicity of these arrangement falls within the range of visible wavelength, hence contributing to the visually observable rainbow coloured rCB flakes. The patterned sample is also transferrable using PDMS stamps. This in turn broadens the application of this material in flexible electronic devices/displays. Photocurrent measurements show most significant enhancement under yellow light illumination. Furthermore, in the presence of an applied potential, the fluorescence detected from the sample can easily be switched off. All in all, we present a simple process to add multiple functionalities to a material that is both inexpensive and sustainable.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Donnet, J. B.; Bansal, R. C.; Wang, M. J. Carbon Black: Science and Technology; Marcel Dekker, Inc.: New York, 1993.

    Google Scholar 

  2. [2]

    ASTM D3849. Annual Book of ASTM standards; 1990, Vol. 09.01, pp 630.

  3. [3]

    Donnet, J. B.; Custodero, E. Ordered structures observed by scanning tunnelling microscopy at atomic scale on carbon black surfaces. Carbon 1992, 30, 813–815.

    Article  Google Scholar 

  4. [4]

    Chang, H.; Bard, A. J. Observation and characterization by scanning tunneling microscopy of structures generated by cleaving highly oriented pyrolytic graphite. Langmuir 1991, 7, 1143–1153.

    Article  Google Scholar 

  5. [5]

    Medalia, A. I. Electrical conduction in carbon black composites. Rubber Chem. Technol. 1986, 59, 432–454.

    Article  Google Scholar 

  6. [6]

    Aminabhavi, T. M.; Cassidy, P. E.; Thompson, C. M. Electrical resistivity of carbon-black-loaded rubbers. Rubber Chem. Technol. 1990, 63, 451–471.

    Article  Google Scholar 

  7. [7]

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom. Atmos. Chem. Phys. 2011, 11, 9037–9052.

    Article  Google Scholar 

  8. [8]

    Wang, Q. Y.; Huang, R. J.; Cao, J. J.; Tie, X. X.; Ni, H. Y.; Zhou, Y. Q.; Han, Y. M.; Hu, T. F.; Zhu, C. S.; Feng, T. et al. Black carbon aerosol in winter northeastern Qinghai-Tibetan Plateau, China: The source, mixing state and optical property. Atmos. Chem. Phys. 2015, 15, 13059–13069.

    Article  Google Scholar 

  9. [9]

    Hu, S. L.; Dong, Y. G.; Yang, J. L.; Liu, J.; Cao, S. R. Simultaneous synthesis of luminescent carbon nanoparticles and carbon nanocages by laser ablation of carbon black suspension and their optical limiting properties. J. Mater. Chem. 2012, 22, 1957–1961.

    Article  Google Scholar 

  10. [10]

    Pandey, N.; Srivastava, R. K.; Singh, M. K.; Singh, J. Optical properties of carbon nanodots synthesized by laser induced fragmentation of graphite powder suspended in water. Mater. Sci. Semicond. Process. 2014, 27, 150–153.

    Article  Google Scholar 

  11. [11]

    Hu, S. L.; Guo, Y.; Dong, Y. G.; Yang, J. L.; Liu, J.; Cao, S. R. Understanding the effects of the structures on the energy gaps in carbon nanoparticles from laser synthesis. J. Mater. Chem. 2012, 22, 12053–12057.

    Article  Google Scholar 

  12. [12]

    Li, Y.; Bi, J. R.; Liu, S.; Wang, H. T.; Yu, C. X.; Li, D. M.; Zhu, B. W.; Tan, M. Q. Presence and formation of fluorescence carbon dots in a grilled hamburger. Food Funct. 2017, 8, 2558–2565.

    Article  Google Scholar 

  13. [13]

    Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nanotoday 2016, 11, 565–586.

    Article  Google Scholar 

  14. [14]

    Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Commun. 2018, 9, 2249.

    Article  Google Scholar 

  15. [15]

    Fan, H. B.; Yang, S. Y.; Zhang, P. F.; Wei, H. Y.; Liu, X. L.; Jiao, C. M.; Zhu, Q. S.; Chen, Y. H.; Wang, Z. G. Investigation of oxygen vacancy and interstitial oxygen defects in ZnO films by photoluminescence and x-ray photoelectron spectroscopy. Chin. Phys. Lett. 2007, 24, 2108–2111.

    Article  Google Scholar 

  16. [16]

    Rodnyi, P. A.; Khodyuk, I. V. Optical and luminescence properties of zinc oxide (Review). Opt. Spectrosc. 2011, 111, 776–785.

    Article  Google Scholar 

  17. [17]

    Lim, K. Y.; Linghu, J. J.; Chi, X.; Yuan, K. D.; Hew, K. M.; Zheng, M. R.; Yang, M.; Tok, E. S.; Rusydi, A.; Yu, X. J. et al. Tunable fluorescence properties due to carbon incorporation in zinc oxide nanowires. Adv. Opt. Mater. 2017, 5, 1700381.

    Article  Google Scholar 

  18. [18]

    Bondybey, V. E. Laser vaporization of silicon carbide. Lifetime and spectroscopy of silicon carbide (SiC2). J. Phys. Chem. 1982, 86, 3396–3399.

    Google Scholar 

  19. [19]

    Guo, S. S.; Yang, M.; Chen, M.; Zhang, J.; Liu, K.; Ye, L.; Gu, W. Bioinspired synthesis of fluorescent calcium carbonate/carbon dot hybrid composites. Dalton Trans. 2015, 44, 8232–8237.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the kind assistance from Dr. Wu Jing in creating the cover design submitted with this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chorng-Haur Sow.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, S.X., Wong, K.L., Zhang, Z. et al. Polychromic carbon black: Laser galvanized multicolour fluorescence display. Nano Res. 12, 733–740 (2019). https://doi.org/10.1007/s12274-018-2239-x

Download citation

Keywords

  • recovered carbon black
  • laser modification
  • fluorescence emission
  • photocurrent
  • flexible