Nano Research

, Volume 12, Issue 4, pp 733–740 | Cite as

Polychromic carbon black: Laser galvanized multicolour fluorescence display

  • Sharon Xiaodai Lim
  • Kae Lin Wong
  • Zheng Zhang
  • Antonio H. Castro Neto
  • Chorng-Haur SowEmail author
Research Article


Recovered carbon black (rCB), a very economical and abundance source of material, is transformed into dazzling multicolour fluorescence and visual display for the first time by way of a scanning focused laser treatment. This laser-initiated process is both straightforward and versatile, catering to both micro- and macro-scopic patterning with the sample in ambient or helium environment. The observed phenomenon is attributed to both chemical and structural induced colouration of rCB powder. Chemically, carbon infusion of oxidised metal occurs when photothermal reaction takes place in ambient. After laser modification with the sample in helium environment, the powder not only fluoresces due to sulphur impurities, control annealing of these powders results in formation of periodic arrangements of carbon nanoparticles. The periodicity of these arrangement falls within the range of visible wavelength, hence contributing to the visually observable rainbow coloured rCB flakes. The patterned sample is also transferrable using PDMS stamps. This in turn broadens the application of this material in flexible electronic devices/displays. Photocurrent measurements show most significant enhancement under yellow light illumination. Furthermore, in the presence of an applied potential, the fluorescence detected from the sample can easily be switched off. All in all, we present a simple process to add multiple functionalities to a material that is both inexpensive and sustainable.


recovered carbon black laser modification fluorescence emission photocurrent flexible 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the kind assistance from Dr. Wu Jing in creating the cover design submitted with this work.

Supplementary material

Supplementary material, approximately 37.3 MB.

12274_2018_2239_MOESM2_ESM.pdf (2.9 mb)
Polychromic carbon black: Laser galvanized multicolour fluorescence display


  1. [1]
    Donnet, J. B.; Bansal, R. C.; Wang, M. J. Carbon Black: Science and Technology; Marcel Dekker, Inc.: New York, 1993.Google Scholar
  2. [2]
    ASTM D3849. Annual Book of ASTM standards; 1990, Vol. 09.01, pp 630.Google Scholar
  3. [3]
    Donnet, J. B.; Custodero, E. Ordered structures observed by scanning tunnelling microscopy at atomic scale on carbon black surfaces. Carbon 1992, 30, 813–815.CrossRefGoogle Scholar
  4. [4]
    Chang, H.; Bard, A. J. Observation and characterization by scanning tunneling microscopy of structures generated by cleaving highly oriented pyrolytic graphite. Langmuir 1991, 7, 1143–1153.CrossRefGoogle Scholar
  5. [5]
    Medalia, A. I. Electrical conduction in carbon black composites. Rubber Chem. Technol. 1986, 59, 432–454.CrossRefGoogle Scholar
  6. [6]
    Aminabhavi, T. M.; Cassidy, P. E.; Thompson, C. M. Electrical resistivity of carbon-black-loaded rubbers. Rubber Chem. Technol. 1990, 63, 451–471.CrossRefGoogle Scholar
  7. [7]
    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom. Atmos. Chem. Phys. 2011, 11, 9037–9052.CrossRefGoogle Scholar
  8. [8]
    Wang, Q. Y.; Huang, R. J.; Cao, J. J.; Tie, X. X.; Ni, H. Y.; Zhou, Y. Q.; Han, Y. M.; Hu, T. F.; Zhu, C. S.; Feng, T. et al. Black carbon aerosol in winter northeastern Qinghai-Tibetan Plateau, China: The source, mixing state and optical property. Atmos. Chem. Phys. 2015, 15, 13059–13069.CrossRefGoogle Scholar
  9. [9]
    Hu, S. L.; Dong, Y. G.; Yang, J. L.; Liu, J.; Cao, S. R. Simultaneous synthesis of luminescent carbon nanoparticles and carbon nanocages by laser ablation of carbon black suspension and their optical limiting properties. J. Mater. Chem. 2012, 22, 1957–1961.CrossRefGoogle Scholar
  10. [10]
    Pandey, N.; Srivastava, R. K.; Singh, M. K.; Singh, J. Optical properties of carbon nanodots synthesized by laser induced fragmentation of graphite powder suspended in water. Mater. Sci. Semicond. Process. 2014, 27, 150–153.CrossRefGoogle Scholar
  11. [11]
    Hu, S. L.; Guo, Y.; Dong, Y. G.; Yang, J. L.; Liu, J.; Cao, S. R. Understanding the effects of the structures on the energy gaps in carbon nanoparticles from laser synthesis. J. Mater. Chem. 2012, 22, 12053–12057.CrossRefGoogle Scholar
  12. [12]
    Li, Y.; Bi, J. R.; Liu, S.; Wang, H. T.; Yu, C. X.; Li, D. M.; Zhu, B. W.; Tan, M. Q. Presence and formation of fluorescence carbon dots in a grilled hamburger. Food Funct. 2017, 8, 2558–2565.CrossRefGoogle Scholar
  13. [13]
    Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nanotoday 2016, 11, 565–586.CrossRefGoogle Scholar
  14. [14]
    Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Commun. 2018, 9, 2249.CrossRefGoogle Scholar
  15. [15]
    Fan, H. B.; Yang, S. Y.; Zhang, P. F.; Wei, H. Y.; Liu, X. L.; Jiao, C. M.; Zhu, Q. S.; Chen, Y. H.; Wang, Z. G. Investigation of oxygen vacancy and interstitial oxygen defects in ZnO films by photoluminescence and x-ray photoelectron spectroscopy. Chin. Phys. Lett. 2007, 24, 2108–2111.CrossRefGoogle Scholar
  16. [16]
    Rodnyi, P. A.; Khodyuk, I. V. Optical and luminescence properties of zinc oxide (Review). Opt. Spectrosc. 2011, 111, 776–785.CrossRefGoogle Scholar
  17. [17]
    Lim, K. Y.; Linghu, J. J.; Chi, X.; Yuan, K. D.; Hew, K. M.; Zheng, M. R.; Yang, M.; Tok, E. S.; Rusydi, A.; Yu, X. J. et al. Tunable fluorescence properties due to carbon incorporation in zinc oxide nanowires. Adv. Opt. Mater. 2017, 5, 1700381.CrossRefGoogle Scholar
  18. [18]
    Bondybey, V. E. Laser vaporization of silicon carbide. Lifetime and spectroscopy of silicon carbide (SiC2). J. Phys. Chem. 1982, 86, 3396–3399.Google Scholar
  19. [19]
    Guo, S. S.; Yang, M.; Chen, M.; Zhang, J.; Liu, K.; Ye, L.; Gu, W. Bioinspired synthesis of fluorescent calcium carbonate/carbon dot hybrid composites. Dalton Trans. 2015, 44, 8232–8237.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sharon Xiaodai Lim
    • 1
  • Kae Lin Wong
    • 2
  • Zheng Zhang
    • 3
  • Antonio H. Castro Neto
    • 1
    • 4
  • Chorng-Haur Sow
    • 1
    • 4
    Email author
  1. 1.Department of PhysicsNational University of SingaporeSingaporeSingapore
  2. 2.Department of Electrical and Electronic EngineeringUniversiti Tunku Abdul Rahman, Sungai Long CampusKajangMalaysia
  3. 3.Institute of Materials Research EngineeringA*Star (Agency for Science, Technology and Research)SingaporeSingapore
  4. 4.Center for Advanced 2D Materials and Graphene Research CenterNational University of SingaporeSingaporeSingapore

Personalised recommendations