Nano Research

, Volume 12, Issue 2, pp 441–448 | Cite as

Li2SnO3 branched nano- and microstructures with intense and broadband white-light emission

  • Miguel García-TecedorEmail author
  • Javier Bartolomé
  • David Maestre
  • Achim Trampert
  • Ana Cremades
Research Article


Exploiting the synergy between microstructure, morphology and dimensions by suitable nanomaterial engineering, can effectively upgrade the physical properties and material performances. Li2SnO3 elongated nano- and microstructures in form of belts, wires, rods and branched structures have been fabricated by a vapor-solid method at temperatures ranging from 700 to 900 °C using metallic Sn and Li2CO3 as precursors. The achievement of these new morphologies can face challenging applications for Li2SnO3, not only in the field of energy storage, but also as building blocks in optoelectronic devices. The micro- and nanostructures grown at 700 and 800 °C correspond to monoclinic Li2SnO3, while at 900 °C complex Li2SnO3/SnO2 core-shell microstructures are grown, as confirmed by X-ray diffraction and Raman spectroscopy. Transmission electron microscopy reveals structural disorder related to stacking faults in some of the branched structures, which is associated with the presence of the low-temperature phase of Li2SnO3. The luminescent response of these structures is dominated by intense emissions at 2, 2.5 and 3 eV, almost completely covering the whole range of the visible light spectrum. As a result, white-light emission is obtained without the need of phosphors or complex quantum well heterostructures. Enhanced functionality in applications such as in light-emitting devices could be exploited based on the high luminescence intensity observed in some of the analysed Li2SnO3 structures.


lithium oxides white light emitters nanostructures luminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by MINECO/FEDER/M-ERA.Net Cofund (Project MAT 2015-65274R, Project MAT 2016-81720-REDC and PCIN-2017-106). The authors are grateful to the spectromicroscopy beamline staff for useful advice on photoelectron spectroscopy measurements at the Elettra Synchrotron in Trieste. M. G. T. also wants to thank Mr. F. del Prado for his useful help on the analysis of the CL and PL results and Dr. G.C. Vásquez for his help with Vesta software.

Supplementary material

12274_2018_2236_MOESM1_ESM.pdf (1.4 mb)
Li2SnO3 branched nano- and microstructures with intense and broadband white-light emission


  1. [1]
    Pang, L. X.; Zhou, D. Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3–CuO addition. J. Am. Ceram. Soc. 2010, 93, 3614–3617.CrossRefGoogle Scholar
  2. [2]
    Fu, Z. F.; Liu, P.; Ma, J. L.; Guo, B. C.; Chen, X. M.; Zhang, H. W. Microwave dielectric properties of low-fired Li2SnO3 ceramics co-doped with MgO–LiF. Mater. Res. Bull. 2016, 77, 78–83.CrossRefGoogle Scholar
  3. [3]
    Liu, C. W.; Wu, N. X.; Mao, Y. L.; Bian, J. J. Phase formation, microstructure and microwave dielectric properties of Li2SnO3-MO (M = Mg, Zn) ceramics. J. Electroceram. 2014, 32, 199–204.CrossRefGoogle Scholar
  4. [4]
    Inagaki, M.; Nakai, S.; Ikeda, T. Synthesis and sintering of Li2SnO3. J. Nucl. Mater. 1988, 160, 224–228.CrossRefGoogle Scholar
  5. [5]
    Moritani, K.; Moriyama, H. In situ luminescence measurement of irradiation defects in ternary lithium ceramics under ion beam irradiation. J. Nucl. Mater. 1997, 248, 132–139.CrossRefGoogle Scholar
  6. [6]
    Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 1997, 276, 1395–1397.CrossRefGoogle Scholar
  7. [7]
    Courtney, I. A.; Dahn, J. R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 1997, 144, 2045–2052.CrossRefGoogle Scholar
  8. [8]
    Fang, L.; Chowdari, B. V. R. Sn–Ca amorphous alloy as anode for lithium ion battery. J. Power Sources 2001, 97–98, 181–184.CrossRefGoogle Scholar
  9. [9]
    Wang, Q. F.; Huang, Y.; Miao, J.; Wang, Y.; Zhao, Y. Hydrothermal derived Li2SnO3/C composite as negative electrode materials for lithium-ion batteries. Appl. Surf. Sci. 2012, 258, 6923–6929.CrossRefGoogle Scholar
  10. [10]
    Zhao, Y.; Huang, Y.; Wang, Q. F.; Wang, X. Y.; Zong, M. Carbon-doped Li2SnO3/graphene as an anode material for lithium-ion batteries. Ceram. Int. 2013, 39, 1741–1747.CrossRefGoogle Scholar
  11. [11]
    Zhao, Y.; Huang, Y.; Wang, Q. F.; Wang, X. Y.; Zong, M.; Wu, H. W.; Zhang, W. Graphene supported Li2SnO3 as anode material for lithium-ion batteries. Electron. Mater. Lett. 2013, 9, 683–686.CrossRefGoogle Scholar
  12. [12]
    Huang, Y.; Wang, G. J.; Wu, T. H.; Peng, S. Y. Catalytic oxydehydrogenation of isobutane over lithium-based oxides. J. Nat. Gas Chem. 1998, 7, 102–107.Google Scholar
  13. [13]
    Zhao, Y.; Huang, Y.; Wang, Q. F. Graphene supported poly-pyrrole(PPY)/ Li2SnO3 ternary composites as anode materials for lithium ion batteries. Ceram. Int. 2013, 39, 6861–6866.CrossRefGoogle Scholar
  14. [14]
    Zhang, D. W.; Zhang, S. Q.; Jin, Y.; Yi, T. H.; Xie, S.; Chen, C. H. Li2SnO3 derived secondary Li–Sn alloy electrode for lithium-ion batteries. J. Alloys Compd. 2006, 415, 229–233.CrossRefGoogle Scholar
  15. [15]
    Belliard, F.; Irvine, J. T. S. Electrochemical comparison between SnO2 and Li2SnO3 synthesized at high and low temperatures. Ionics 2001, 7, 16–21.CrossRefGoogle Scholar
  16. [16]
    Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.CrossRefGoogle Scholar
  17. [17]
    O’donnell, K. P.; Auf der Maur, M.; Di Carlo, A.; Lorenz, K.; the SORBET consortium. It’s not easy being green: Strategies for all-nitrides, all-colour solid state lighting. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2012, 6, 49–52.CrossRefGoogle Scholar
  18. [18]
    García-Tecedor, M.; Maestre, D.; Cremades, A.; Piqueras, J. Growth and characterization of Cr doped SnO2 microtubes with resonant cavity modes. J. Mater. Chem. C 2016, 4, 5709–5716.CrossRefGoogle Scholar
  19. [19]
    García-Tecedor, M.; Maestre, D.; Cremades, A.; Piqueras, J. Tailoring optical resonant cavity modes in SnO2 microstructures through doping and shape engineering. J. Phys. D Appl. Phys. 2017, 50, 415104.CrossRefGoogle Scholar
  20. [20]
    Vásquez, G. C.; Peche-Herrero, M. A.; Maestre, D.; Cremades, A.; Ramírez-Castellanos, J.; González-Calbet, J. M.; Piqueras, J. Cr doped titania microtubes and microrods synthesized by a vapor–solid method. CrystEngComm 2013, 15, 5490–5495.CrossRefGoogle Scholar
  21. [21]
    Bartolomé, J.; Maestre, D.; Amati, M.; Cremades, A.; Piqueras, J. Indium zinc oxide pyramids with pinholes and nanopipes. J. Phys. Chem. C 2011, 115, 8354–8360.CrossRefGoogle Scholar
  22. [22]
    Hodeau, J. L.; Marezio, M.; Santoro, A.; Roth, R. S. Neutron profile refinement of the structures of Li2SnO3 and Li2ZrO3. J. Solid State Chem. 1982, 45, 170–179.CrossRefGoogle Scholar
  23. [23]
    Bolzan, A. A.; Fong, C.; Kennedy, B. J.; Howard, C. J. Structural studies of rutile-type metal dioxides. Acta Crystallogr., Sect. B 1997, 53, 373–380.CrossRefGoogle Scholar
  24. [24]
    Tarakina, N. V.; Denisova, T. A.; Baklanova, Y. V.; Maksimova, L. G.; Zubkov, V. G.; Neder, R. B. Defect crystal structure of low temperature modifications of Li2MO3 (M = Ti, Sn) and related hydroxides. Adv. Sci. Technol. 2010, 63, 352–357.CrossRefGoogle Scholar
  25. [25]
    Tarakina, N. V.; Denisova, T. A.; Maksimova, L. G.; Baklanova, Y. V.; Tyutyunnik, A. P.; Berger, I. F.; Zubkov, V. G.; Van Tendeloo, G. Investigation of stacking disorder in Li2SnO3. Z. Kristallogr. Suppl. 2009, 30, 375–380.CrossRefGoogle Scholar
  26. [26]
    Livneh, T.; Lilach, Y.; Popov, I.; Kolmakov, A.; Moskovits, M. Polarized Raman scattering from a single, segmented SnO2 wire. J. Phys. Chem. C 2011, 115, 17270–17277.CrossRefGoogle Scholar
  27. [27]
    EELS Atlas Database [Online]. Gatan Corporate. (accessed Apr 5, 2018).Google Scholar
  28. [28]
    Wang, Q. F.; Huang, Y.; Miao, J.; Zhao, Y.; Wang, Y. Synthesis and properties of carbon-doped Li2SnO3 nanocomposite as cathode material for lithium-ion batteries. Mater. Lett. 2012, 71, 66–69.CrossRefGoogle Scholar
  29. [29]
    NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899 (2000), doi:10.18434/T4T88K.Google Scholar
  30. [30]
    Howard, J.; Holzwarth, N. First-principles simulations of the porous layered calcogenides Li2+xSnO3 and Li2+xSnS3. Phys. Rev. B 2016, 94, 064108.CrossRefGoogle Scholar
  31. [31]
    Valerini, D.; Creti, A.; Lomascolo, M.; Manna, L.; Cingolani, R.; Anni, M. Temperature dependence of the photoluminescence properties of colloidal CdSe⁄ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys. Rev. B 2005, 71, 235409.CrossRefGoogle Scholar
  32. [32]
    Gaponenko, M. S.; Lutich, A. A.; Tolstik, N. A.; Onushchenko, A. A.; Malyarevich, A. M.; Petrov, E. P.; Yumashev, K. V. Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping. Phys. Rev. B 2010, 82, 125320.CrossRefGoogle Scholar
  33. [33]
    Cao, R. P.; Wang, W. D.; Zhang, J. L.; Jiang, S. H.; Chen, Z. Q.; Li, W. S.; Yu, X. G. Synthesis and luminescence properties of Li2SnO3: Mn4+ red-emitting phosphor for solid-state lighting. J. Alloys Compd. 2017, 704, 124–130.CrossRefGoogle Scholar
  34. [34]
    Maestre, D.; Cremades, A.; Piqueras, J. Growth and luminescence properties of micro- and nanotubes in sintered tin oxide. J. Appl. Phys. 2005, 97, 044316.CrossRefGoogle Scholar
  35. [35]
    Wiese, W. L.; Fuhr, J. R. Accurate atomic transition probabilities for hydrogen, helium, and lithium. J. Phys. Chem. Ref. Data 2009, 38, 565–720.CrossRefGoogle Scholar
  36. [36]
    Kallel, W.; Bouattour, S.; Ferreira, L. F. V.; do Rego, A. M. B. Synthesis, XPS and luminescence (investigations) of Li+ and/or Y3+ doped nanosized titanium oxide. Mater. Chem. Phys. 2009, 114, 304–308.CrossRefGoogle Scholar
  37. [37]
    López, I.; Alonso-Orts, M.; Nogales, E.; Méndez, B.; Piqueras, J. Influence of Li doping on the morphology and luminescence of Ga2O3 microrods grown by a vapor-solid method. Semiconduct. Sci. Technol. 2016, 31, 115003.CrossRefGoogle Scholar
  38. [38]
    Henderson, B.; Imbusch, G. F. Optical Spectroscopy of Inorganic Solids; Clarendon Press: Oxford, 1989.Google Scholar
  39. [39]
    Shein, I. R.; Denisova, T. A.; Baklanova, Y. V.; Ivanovskii, A. L. Structural, electronic properties and chemical bonding in protonated lithium metallates Li2−x Hx MO3 (M= Ti, Zr, Sn). J. Struct. Chem. 2011, 52, 1043–1050.CrossRefGoogle Scholar
  40. [40]
    Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 2013, 12, 827–835.CrossRefGoogle Scholar
  41. [41]
    Di Valentin, C.; Pacchioni, G.; Selloni, A. Origin of the different photoactivity of N-doped anatase and rutile TiO2. Phys. Rev. B 2004, 70, 085116.CrossRefGoogle Scholar
  42. [42]
    Muthu, S.; Schuurmans, F. J. P.; Pashley, M. D. Red, green, and blue LEDs for white light illumination. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 333–338.CrossRefGoogle Scholar
  43. [43]
    Park, J. K.; Lim, M. A.; Kim, C. H.; Park, H. D.; Park, J. T.; Choi, S. Y. White light-emitting diodes of GaN-based Sr2SiO4: Eu and the luminescent properties. Appl. Phys. Lett. 2003, 82, 683–685.CrossRefGoogle Scholar
  44. [44]
    Kim, J. S.; Jeon, P. E.; Park, Y. H.; Choi, J. C.; Park, H. L.; Kim, G. C.; Kim, T. W. White-light generation through ultraviolet-emitting diode and white-emitting phosphor. Appl. Phys. Lett. 2004, 85, 3696–3698.CrossRefGoogle Scholar
  45. [45]
    Yamada, M.; Narukawa, Y.; Mukai, T. Phosphor free high-luminous-efficiency white light-emitting diodes composed of InGaN multi-quantum well. Jpn. J. Appl. Phys. 2002, 41, L246–L248.CrossRefGoogle Scholar
  46. [46]
    Huang, C. F.; Lu, C. F.; Tang, T. Y.; Huang, J. J.; Yang, C. C. Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN⁄GaN quantum wells. Appl. Phys. Lett. 2007, 90, 151122.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018, corrected publication 2018 2018

Authors and Affiliations

  • Miguel García-Tecedor
    • 1
    Email author
  • Javier Bartolomé
    • 2
  • David Maestre
    • 1
  • Achim Trampert
    • 2
  • Ana Cremades
    • 1
  1. 1.Dpt. Física de Materiales, Facultad de CC. FísicasUniversidad Complutense de MadridMadridSpain
  2. 2.Paul-Drude-Institut für FestkörperelektronikBerlinGermany

Personalised recommendations