Nano Research

, Volume 12, Issue 2, pp 365–373 | Cite as

Tunable photocycle kinetics of a hybrid bacteriorhodopsin/quantum dot system

  • Terianna J. Wax
  • Jordan A. Greco
  • Shutang Chen
  • Nicole L. Wagner
  • Jing ZhaoEmail author
  • Robert R. BirgeEmail author
Research Article


The inclusion of inorganic nanoparticles in biological environments has led to the creation of hybrid nanosystems that are employed in a variety of applications. One such system includes quantum dots (QDs) coupled with the photoactive protein, bacteriorhodopsin (BR), which has been explored in developing enhanced photovoltaic devices. In this work, we have discovered that the kinetics of the BR photocycle can be manipulated using CdSe/CdS (core/shell) QDs. The photocycle lifetime of protein samples with varying QD amounts were monitored using time-resolved absorption spectroscopy. Concentration-dependent elongations of the bR and M state lifetimes were observed in the kinetic traces, thus suggesting that excitonic coupling occurs between BR and QDs. We propose that the pairing of BR with QDs has the potential to be utilized in protein-based computing applications, specifically for real-time holographic processors, which depend on the temporal dynamics of the bR and M photointermediates.


bacteriorhodopsin photocycle bionanotechnology photochromism quantum dot hybrid materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Work in the laboratory of R.R.B. was supported by grants from the National Institutes of Health (GM-34548) and the Harold S. Schwenk Sr. Distinguished Chair in Chemistry. Work in the laboratory of J. Z. was partially supported by the National Science Foundation (No. CAREER-1554800). We also thank Nathan B. Gillespie for the K state spectrum shown in Fig. 5 of this report. (The K state spectrum is reproduced with permission from Ref. [24], © American Chemical Society 1999).

Supplementary material

12274_2018_2224_MOESM1_ESM.pdf (3.4 mb)
Tunable photocycle kinetics of a hybrid bacteriorhodopsin/quantum dot system


  1. [1]
    Parpura, V. Bionanoelectronics: Getting close to the action. Nat. Nanotechnol. 2012, 7, 143–145.CrossRefGoogle Scholar
  2. [2]
    Noy, A. Bionanoelectronics. Adv. Mater. 2011, 23, 807–820.CrossRefGoogle Scholar
  3. [3]
    Maine, E.; Thomas, V. J.; Bliemel, M.; Murira, A.; Utterback, J. The emergence of the nanobiotechnology industry. Nat. Nanotechnol. 2014, 9, 2–5.CrossRefGoogle Scholar
  4. [4]
    Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009, 8, 543–557.CrossRefGoogle Scholar
  5. [5]
    Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle–cell interactions. Small 2010, 6, 12–21.CrossRefGoogle Scholar
  6. [6]
    Alkilany, A. M.; Lohse, S. E.; Murphy, C. J. The gold standard: Gold nanoparticle libraries to understand the nano–bio interface. Acc. Chem. Res. 2013, 46, 650–661.CrossRefGoogle Scholar
  7. [7]
    Oesterhelt, D.; Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New. Biol. 1971, 233, 149–152.CrossRefGoogle Scholar
  8. [8]
    Luecke, H.; Schobert, B.; Richter, H. T.; Cartailler, J. P.; Lanyi, J. K. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 1999, 291, 899–911.CrossRefGoogle Scholar
  9. [9]
    Henderson, R.; Baldwin, J. M.; Ceska, T. A.; Zemlin, F.; Beckmann, E.; Downing, K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 1990, 213, 899–929.CrossRefGoogle Scholar
  10. [10]
    Stuart, J. A.; Birge, R. R. Characterization of the primary photochemical events in bacteriorhodopsin and rhodopsin. In Biomembranes. Lee, A. G., Ed.; JAI Press: London, 1996; pp 33–139.Google Scholar
  11. [11]
    Lozier, R. H.; Niederberger, W.; Bogomolni, R. A.; Hwang, S.; Stoeckenius, W. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane. Biochim. Biophys. Acta 1976, 440, 545–556.CrossRefGoogle Scholar
  12. [12]
    Oesterhelt, D.; Hegemann, P.; Tittor, J. The photocycle of the chloride pump halorhodopsin. II. Quantum yields and a kinetic model. EMBO J. 1985, 4, 2351–2356.Google Scholar
  13. [13]
    Govindjee, R.; Balashov, S. P.; Ebrey, T. G. Quantum efficiency of the photochemical cycle of bacteriorhodopsin. Biophys. J. 1990, 58, 597–608.CrossRefGoogle Scholar
  14. [14]
    Lanyi, J. K. Bacteriorhodopsin. Annu. Rev. Physiol. 2004, 66, 665–688.CrossRefGoogle Scholar
  15. [15]
    Hayashi, S.; Tajkhorshid, E.; Schulten, K. Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle. Biophys. J. 2002, 83, 1281–1297.CrossRefGoogle Scholar
  16. [16]
    Edman, K.; Nollert, P.; Royant, A.; Beirhali, H.; Pebay-Peyroula, E.; Hajdu, J.; Neutze, R.; Landau, E. M. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 1999, 401, 822–826.CrossRefGoogle Scholar
  17. [17]
    Schenkl, S.; van Mourik, F.; van der Zwan, G.; Haacke, S.; Chergui, M. Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin. Science 2005, 309, 917–920.CrossRefGoogle Scholar
  18. [18]
    Kobayashi, T.; Salto, T.; Ohtani, H. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 2001, 414, 531–534.CrossRefGoogle Scholar
  19. [19]
    Herbst, J.; Heyne, K.; Diller, R. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science 2002, 297, 822–825.CrossRefGoogle Scholar
  20. [20]
    Atkinson, G. H.; Brach, T. L.; Blanchard, D.; Rumbles, G. Picosecond time-resolved resonance Raman spectroscopy of the initial trans to cis isomerization in the bacteriorhodopsin photocycle. Chem. Phys. 1989, 131, 1–15.CrossRefGoogle Scholar
  21. [21]
    Nogly, P.; Weinert, T.; James, D. Carbajo, S.; Ozerov, D.; Furrer, A.; Gashi, D.; Borin, V.; Skopintsev, P.; Jaeger, K. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond X-ray laser. Science, in press, DOI: 10.1126/science.aat0094.Google Scholar
  22. [22]
    Nango, E.; Royant, A.; Kubo, M.; Nakane, T.; Wickstrand, C.; Kimura, T.; Tanaka, T.; Tono, K.; Song, C. Y.; Tanaka, R. et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 2016, 354, 1552–1557.CrossRefGoogle Scholar
  23. [23]
    Balashov, S. P. Protonation reactions and their coupling in bacteriorhodopsin. Biochim. Biophys. Acta 2000, 1460, 75–94.CrossRefGoogle Scholar
  24. [24]
    Birge, R. R.; Gillespie, N. B.; Izaguirre, E. W.; Kusnetzow, A.; Lawrence, A. F.; Singh, D.; Song, Q. W.; Schmidt, E.; Stuart, J. A.; Seetharaman, S. et al. Biomolecular electronics: Protein-based associative processors and volumetric memories. J. Phys. Chem. B 1999, 103, 10746–10766.CrossRefGoogle Scholar
  25. [25]
    He, J. A.; Samuelson, L.; Li, L.; Kumar, J.; Tripathy, S. K. Bacteriorhodopsin thin-film assemblies—Immobilization, properties, and applications. Adv. Mater. 1999, 11, 435–446.CrossRefGoogle Scholar
  26. [26]
    Stuart, J. A.; Marcy, D. L.; Birge, R. R. Photonic and optoelectronic applications of bacteriorhodopsin. In Bioelectronic Applications of Photochromic Pigments. Dér, A.; Keszthelyi, L., Eds.; IOS Press: Szeged, Hungary, 2000; pp 16–29.Google Scholar
  27. [27]
    Tallent, J.; Song, Q. W.; Li, Z. F.; Stuart, J.; Birge, R. R. Effective photochromic nonlinearity of dried blue-membrane bacteriorhodopsin films. Opt. Lett. 1996, 21, 1339–1341.CrossRefGoogle Scholar
  28. [28]
    Hampp, N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem. Rev. 2000, 100, 1755–1776.CrossRefGoogle Scholar
  29. [29]
    Cutsuridis, V.; Wennekers, T. Hippocampus, microcircuits and associative memory. Neural Netw. 2009, 22, 1120–1128.CrossRefGoogle Scholar
  30. [30]
    Reijmers, L. G.; Perkins, B. L.; Matsuo, N.; Mayford, M. Localization of a stable neural correlate of associative memory. Science 2007, 317, 1230–1233.CrossRefGoogle Scholar
  31. [31]
    Hampp, N.; Thoma, R.; Zeisel, D.; Brüchle, C.; Oesterhelt, D. Bacteriorhodopsin variants for holographic pattern recognition. Adv. Chem. 1994, 240, 511–526.CrossRefGoogle Scholar
  32. [32]
    Paek, E. G.; Jung, E. C. Simplified holographic associative memory using enhanced nonlinear processing with a thermoplastic plate. Opt. Lett. 1991, 16, 1034–1036.CrossRefGoogle Scholar
  33. [33]
    Paek, E. G.; Psaltis, D. Optical associative memory using Fourier transform holograms. Opt. Eng. 1987, 26, 265428.CrossRefGoogle Scholar
  34. [34]
    Abu-Mostafa, Y. S.; Psaltis, D. Optical neural computers. Sci. Am. 1987, 256, 88–95.CrossRefGoogle Scholar
  35. [35]
    Popp, A.; Wolperdinger, M.; Hampp, N.; Bräuchle, C.; Oesterhelt, D. Photochemical conversion of the O-intermediate to 9-cis-retinal-containing products in bacteriorhodopsin films. Biophys. J. 1993, 65, 1449–1459.CrossRefGoogle Scholar
  36. [36]
    Gillespie, N. B.; Wise, K. J.; Ren, L.; Stuart, J. A.; Marcy, D. L.; Hillebrecht, J.; Li, Q.; Ramos, L.; Jordan, K.; Fyvie, S. et al. Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin. J. Phys. Chem. B 2002, 106, 13352–13361.CrossRefGoogle Scholar
  37. [37]
    Ranaghan, M. J.; Greco, J. A.; Wagner, N. L.; Grewal, R.; Rangarajan, R.; Koscielecki, J. F.; Wise, K. J.; Birge, R. R. Photochromic bacteriorhodopsin mutant with high holographic efficiency and enhanced stability via a putative self-repair mechanism. ACS Appl. Mater. Interfaces 2014, 6, 2799–2808.CrossRefGoogle Scholar
  38. [38]
    Wagner, N. L.; Greco, J. A.; Ranaghan, M. J.; Birge, R. R. Directed evolution of bacteriorhodopsin for applications in bioelectronics. J. R. Soc. Interface 2013, 10, 20130197.CrossRefGoogle Scholar
  39. [39]
    Hillebrecht, J. R.; Wise, K. J.; Koscielecki, J. F.; Birge, R. R. Directed evolution of bacteriorhodopsin for device applications. Methods Enzymol. 2004, 388, 333–347.CrossRefGoogle Scholar
  40. [40]
    Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core–shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.CrossRefGoogle Scholar
  41. [41]
    Alivisatos, A. P.; Gu, W. W.; Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 2005, 7, 55–76.CrossRefGoogle Scholar
  42. [42]
    Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.CrossRefGoogle Scholar
  43. [43]
    Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.CrossRefGoogle Scholar
  44. [44]
    Griep, M. H.; Winder, E. M.; Lueking, D. R.; Garrett, G. A.; Karna, S. P.; Friedrich, C. R. Förster resonance energy transfer between core/shell quantum dots and bacteriorhodopsin. Mol. Biol. Int. 2012, 2012, 910707.CrossRefGoogle Scholar
  45. [45]
    Rakovich, A.; Nabiev, I.; Sukhanova, A.; Lesnyak, V.; Gaponik, N.; Rakovich, Y. P.; Donegan, J. F. Large enhancement of nonlinear optical response in a hybrid nanobiomaterial consisting of bacteriorhodopsin and cadmium telluride quantum dots. ACS Nano 2013, 7, 2154–2160.CrossRefGoogle Scholar
  46. [46]
    Rakovich, A.; Sukhanova, A.; Bouchonville, N.; Lukashev, E.; Oleinikov, V.; Artemyev, M.; Lesnyak, V.; Gaponik, N.; Molinari, M.; Troyon, M. et al. Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots. Nano Lett. 2010, 10, 2640–2648.CrossRefGoogle Scholar
  47. [47]
    Bouchonville, N.; Molinari, M.; Sukhanova, A.; Artemyev, M.; Oleinikov, V. A.; Troyon, M.; Nabiev, I. Charge-controlled assembling of bacteriorhodopsin and semiconductor quantum dots for fluorescence resonance energy transferbased nanophotonic applications. Appl. Phys. Lett. 2011, 98, 013703.CrossRefGoogle Scholar
  48. [48]
    Griep, M. H.; Walczak, K. A.; Winder, E. M.; Lueking, D. R.; Friedrich, C. R. Quantum dot enhancement of bacteriorhodopsin-based electrodes. Biosens. Bioelectron. 2010, 25, 1493–1497.CrossRefGoogle Scholar
  49. [49]
    Roy, P.; Kantor-Uriel, N.; Mishra, D.; Dutta, S.; Friedman, N.; Sheves, M.; Naaman, R. Spin-controlled photoluminescence in hybrid nanoparticles purple membrane system. ACS Nano 2016, 10, 4525–4531.CrossRefGoogle Scholar
  50. [50]
    Peck, R. F.; DasSarma, S.; Krebs, M. P. Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol. Microbiol. 2000, 35, 667–676.CrossRefGoogle Scholar
  51. [51]
    Becher, B. M.; Cassim, J. Y. Improved isolation procedures for the purple membrane of Halobacterium halobium. Prep. Biochem. 1975, 5, 161–178.Google Scholar
  52. [52]
    Nan, W. N.; Niu, Y.; Qin, H. Y.; Cui, F.; Yang, Y.; Lai, R. C.; Lin, W. Z.; Peng, X. G. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 2012, 134, 19685–19693.CrossRefGoogle Scholar
  53. [53]
    Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H.-S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe/CdS core/shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.CrossRefGoogle Scholar
  54. [54]
    Greenhalgh, D. A.; Altenbach, C.; Hubbell, W. L.; Khorana, H. G. Locations of Arg-82, Asp-85, and Asp-96 in helix C of bacteriorhodopsin relative to the aqueous boundaries. Proc. Natl. Acad. Sci. USA 1991, 88, 8626–8630.CrossRefGoogle Scholar
  55. [55]
    Krebs, M. P.; Behrens, W.; Mollaaghababa, R.; Khorana, H. G.; Heyn, M. P. X-ray diffraction of a cystein-containing bacteriorhodopsin mutant and its mercury derivative. Localization of an amino acid residue in the loop of an integral membrane protein. Biochemistry 1993, 32, 12830–12834.Google Scholar
  56. [56]
    Mollaaghababa, R.; Steinhoff, H.-J.; Hubbell, W. L.; Khorana, H. G. Timeresolved site-directed spin-labeling studies of bacteriorhodopsin. Loop-specific conformational changes in M. Biochemistry 2000, 39, 1120–1127.Google Scholar
  57. [57]
    Brizzolara, R. A.; Boyd, J. L.; Tate, A. E. Evidence for covalent attachment of purple membrane to a gold surface via genetic modification of bacteriorhodopsin. J. Vac. Sci. Technol. 1997, 15, 773–778.CrossRefGoogle Scholar
  58. [58]
    Schranz, M.; Noll, F.; Hampp, N. Oriented purple membrane monolayers covalently attached to gold by multiple thiole linkages analyzed by single molecule force spectroscopy. Langmuir 2007, 23, 11134–11138.CrossRefGoogle Scholar
  59. [59]
    Patil, A. V.; Premaruban, T.; Berthoumieu, O.; Watts, A.; Davis, J. J. Enhanced photocurrent in engineered bacteriorhodopsin monolayer films. J. Phys. Chem. B 2012, 116, 683–689.CrossRefGoogle Scholar
  60. [60]
    Eliash, T.; Weiner, L.; Ottolenghi, M.; Sheves, M. Specific binding sites for cations in bacteriorhodopsin. Biophys. J. 2001, 81, 1155–1162.CrossRefGoogle Scholar
  61. [61]
    Renugopalakrishnan, V.; Barbiellini, B.; King, C.; Molinari, M.; Mochalov, K.; Sukhanova, A.; Nabiev, I.; Fojan, P.; Tuller, H. L.; Chin, M. et al. Engineering a robust photovoltaic device with quantum dots and bacteriorhodopsin. J. Phys. Chem. C 2014, 118, 16710–16717.CrossRefGoogle Scholar
  62. [62]
    Li, R.; Li, C. M.; Bao, H. F.; Bao, Q. Stationary current generated from photocycle of a hybrid bacteriorhodopsin/quantum dot bionanosystem. Appl. Phys. Lett. 2007, 91, 223901.CrossRefGoogle Scholar
  63. [63]
    Yen, C.-W.; Chu, L.-K.; El-Sayed, M. A. Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle. J. Am. Chem. Soc. 2010, 132, 7250–7251.CrossRefGoogle Scholar
  64. [64]
    Uruga, T.; Hamanaka, T.; Kito, Y.; Uchida, I.; Nishimura, S.; Mashimo, T. Effects of volatile anesthetics on bacteriorhodopsin in purple membrane, Halobacterium halobium cells and reconstituted vesicles. Biophys. Chem. 1991, 41, 157–168.CrossRefGoogle Scholar
  65. [65]
    Pandey, P. C.; Upadhyay, B. C.; Pandey, C. M. D.; Pathak, H. C. Dependence of M, N and O states decay kinetics of D96N bacteriorhodopsin on amine and amino compounds and its application in chemical sensing. Sens. Actuators B 1998, 46, 80–86.CrossRefGoogle Scholar
  66. [66]
    Avi-Dor, Y.; Rott, R.; Schnaiderman, R. The effect of antibiotics on the photocycle and protoncycle of purple membrane suspensions. Biochim. Biophys. Acta 1979, 545, 15–23.CrossRefGoogle Scholar
  67. [67]
    Chizhov, I.; Engelhard, M.; Chernavskii, D. S.; Zubov, B.; Hess, B. Temperature and pH sensitivity of the O640 intermediate of the bacteriorhodopsin photocycle. Biophys. J. 1992, 61, 1001–1006.CrossRefGoogle Scholar
  68. [68]
    Váró, G; Lanyi, J. K. Protonation and deprotonation of the M, N, and O intermediates during the bacteriorhodopsin photocycle. Biochemistry 1990, 29, 6858–6865.CrossRefGoogle Scholar
  69. [69]
    Kono, M.; Misra, S.; Ebrey, T. G. pH dependence of light-induced proton release by bacteriorhodopsin. FEBS Lett. 1993, 331, 31–34.CrossRefGoogle Scholar
  70. [70]
    Greco, J. A.; N. L. Wagner, N. L.; Birge, R. R. Fourier transform holographic associative processors based on bacteriorhodopsin. Int. J. Unconv. Comput. 2012, 8, 433–457.Google Scholar
  71. [71]
    Oesterhelt, D.; Bräuchle, C.; Hampp, N. Bacteriorhodopsin: A biological material for information processing. Quart. Rev. Biophys. 1991, 24, 425–478.CrossRefGoogle Scholar
  72. [72]
    Krivenkov, V. A.; Solovyeva, D. O.; Samokhvalov, P. S.; Brazhnik, K. I.; Kotkovskiy, G. E.; Christyakov, A. A.; Lukashev, E. P.; Nabiev, I. R. Photoinduced modification of quantum dot optical properties affects bacteriorhodopsin photocycle in a (quantum dot)-bacteriorhodopsin hybrid material. J. Phys.: Conf. Ser. 2014, 541, 012045.Google Scholar
  73. [73]
    Zaitsev, S. Y.; Lukashev, E. P.; Solovyeva, D. O.; Chistyakov, A. A.; Oleinikov, V. A. Controlled influence of quantum dots on purple membranes at interfaces. Colloids Surf. B 2014, 117, 248–251.CrossRefGoogle Scholar
  74. [74]
    Bunkin, F. V.; Vsevolodov, N. N.; Druzhko, A. B.; Mitsner, B. I.; Prokhorov, A. M.; Savranskii, V. V.; Tkachenko, N. W.; Shevchenko, T. B. Diffraction efficiency of bacteriorhodopsin and its analogs. Sov. Tech. Phys. Lett. 1981, 7, 630–631.Google Scholar
  75. [75]
    Vsevolodov, N. N.; Poltoratskii, V. A. Holograms in biochrome, a biological photochromic material. Sov. Phys. Tech. Phys. 1985, 30, 1235–1247.Google Scholar
  76. [76]
    Korenstein, R.; Hess, B. Hydration effects on the photocycle of bacteriorhodopsin in the thin layers of purple membrane. Nature 1977, 270, 184–186.CrossRefGoogle Scholar
  77. [77]
    Druzhko, A. B.; Chamorovsky, S. K. The cycle of photochromic reactions of a bacteriorhodopsin analog with 4-keto-retinal. BioSystems 1995, 35, 133–136.CrossRefGoogle Scholar
  78. [78]
    Beischel, C. J.; Mani, V.; Govindjee, R.; Ebrey, T. G.; Knapp, D. R.; Crouch, R. K. Ring oxidized retinals form unusual bacteriorhodopsin analogue pigments. Photochem. Photobiol. 1991, 54, 977–983.CrossRefGoogle Scholar
  79. [79]
    Zeisel, D.; Hampp, N. Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRwt and the variant BRD96N. J. Phys. Chem. 1992, 96, 7788–7792.CrossRefGoogle Scholar
  80. [80]
    Thorgeirsson, T. E.; Milder, S. J.; Miercke, L. J. W.; Betlach, M. C.; Shand, R. F.; Stroud, R. M.; Kliger, D. S. Effects of Asp-96 → Asn, Asp-85 → Asn, and Arg-82 → Gln single state substitutions on the photocycle of bacteriorhodopsin. Biochemistry 1991, 30, 9133–9142.CrossRefGoogle Scholar
  81. [81]
    Cao, Y.; Brown, L. S.; Needleman, R.; Lanyi, J. K. Relationship of proton uptake on the cytoplasmic surface and reisomerization of the retinal in the bacteriorhodopsin photocycle: An attempt to understand the complex kinetics of the pH changes and the N and O intermediates. Biochemistry 1993, 32, 10239–10248.CrossRefGoogle Scholar
  82. [82]
    Song, Q. W.; Zhang, C. P.; Gross, R.; Birge, R. Optical limiting by chemically enhanced bacteriorhodopsin films. Opt. Lett. 1993, 18, 775–777.CrossRefGoogle Scholar
  83. [83]
    Schobert, B.; Cupp-Vickery, J.; Hornak, V.; Smith, S. O.; Lanyi, J. K. Crystallographic structure of the K intermediate of bacteriorhodopsin: Conservation of free energy after photoisomerization of the retinal. J. Mol. Biol. 2002, 321, 715–726.CrossRefGoogle Scholar
  84. [84]
    Chu, L.-K.; Yen, C.-W.; El-Sayed, M. A. On the mechanism of the plasmonic field enhancement of the solar-to-electric energy conversion by the other photosynthetic system in nature (bacteriorhodopsin): Kinetic and spectroscopic study. J. Phys. Chem. C 2010, 114, 15358–15363.CrossRefGoogle Scholar
  85. [85]
    Biesso, A.; Qian, W.; Huang, X. H.; El-Sayed, M. A. Gold nanoparticles surface plasmon field effects on the proton pump process of the bacteriorhodopsin photosynthesis. J. Am. Chem. Soc. 2009, 131, 2442–2443.CrossRefGoogle Scholar
  86. [86]
    Rakovich, A.; Donegan, J. F.; Oleinikov, V.; Molinari, M.; Sukhanova, A.; Nabiev, I.; Rakovich, Y. P. Linear and nonlinear optical effects induced by energy transfer from semiconductor nanoparticles to photosynthetic biological systems. J. Photochem. Photobiol. C 2014, 20, 17–32.CrossRefGoogle Scholar
  87. [87]
    Griep, M.; Mallick, G.; Lueking, D. R.; Friedrich, C. R.; Karna, S. P. Integration of optical protein and quantum dot films for biosensing. In Proceedings of the 8th IEEE Conference on Nanotechnology, Arlington, Texas, USA, 2008, pp 657–659.Google Scholar
  88. [88]
    Lee, T.-Y.; Yeh, V.; Chuang, J. L.; Chung Chan, J. C.; Chu, L.-K.; Yu, T.-Y. Tuning the photocycle kinetics of bacteriorhodopsin in lipid nanodiscs. Biophys. J. 2015, 109, 1899–1906.CrossRefGoogle Scholar
  89. [89]
    Drachev, A. L.; Drachev, L. A.; Kaulen, A. D.; Khitrina, L. V. The action of lanthanum ions and formaldehyde on the proton-pumping function of bacteriorhodopsin. Eur. J. Biochem. 1984, 138, 349–356.CrossRefGoogle Scholar
  90. [90]
    Hildebrandt, N.; Spillmann, C. M.; Algar, W. R.; Pons, T.; Stewart, M. H.; Oh, E.; Susumu, K.; Díaz, S. A.; Delehanty, J. B.; Medintz, I. L. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev. 2017, 117, 536–711.CrossRefGoogle Scholar
  91. [91]
    Stewart, M. H.; Huston, A. L.; Scott, A. M.; Oh, E.; Algar, W. R.; Deschamps, J. R.; Susumu, K.; Jain, V.; Prasuhn, D. E.; Blanco-Canosa, J. et al. Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates. ACS Nano 2013, 7, 9489–9505.CrossRefGoogle Scholar
  92. [92]
    Allam, N. K.; Yen, C.-W.; Near, R. D.; El-Sayed, M. A. Bacteriorhodopsin/TiO2 nanotube arrays hybrid system for enhanced photoelectrochemical water splitting. Energy Environ. Sci. 2011, 4, 2909–2914.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Terianna J. Wax
    • 1
  • Jordan A. Greco
    • 1
  • Shutang Chen
    • 1
  • Nicole L. Wagner
    • 1
  • Jing Zhao
    • 1
    Email author
  • Robert R. Birge
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of ConnecticutStorrsUSA

Personalised recommendations