Skip to main content
Log in

Structural isomer and high-yield of Pt1Ag28 nanocluster via one-pot chemical wet method

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In order to understand the structure–property correlation and explore the application of metal nanoclusters, it is important and intriguing to determine their crystal structure and obtain high-yield. At the same time, this is also a challenge in nanoscience and technology. Here, we report the highly efficient synthesis of Pt1Ag28 nanocluster via one-pot chemical wet method. The crystal structure of Pt1Ag28 nanocluster was determined by X-ray crystallography to be a face centered cubic (FCC) kernel. This novel structure is the structural isomerization of Pt1Ag28 nanocluster reported before. This phenomenon is first discovered in the synthesis of alloy nanoclusters. In addition, Pt1Ag28 nanocluster has high yield and exhibits potential optics in the near infrared (NIR) fluorescent imaging. The time-dependent density functional theory (TD-DFT) calculation implied that the optical property of Pt1Ag28 was sensitive to its structure. This work provides a simple method to synthesize alloy nanoclusters with structural isomerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

    Article  CAS  Google Scholar 

  2. Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

    Article  CAS  Google Scholar 

  3. Tian, D. H.; Qian, Z. S.; Xia, Y. S.; Zhu, C. Q. Gold nanocluster-based fluorescent probes for near-infrared and turn-on sensing of glutathione in living cells. Langmuir 2012, 28, 3945–3951.

    Article  CAS  Google Scholar 

  4. Cao, S. M.; Ding, S. S.; Liu, Y. Z.; Zhu, A. W.; Shi, G. Y. Biomimetic mineralization of gold nanoclusters as multifunctional thin films for glass nanopore modification, characterization, and sensing. Anal. Chem. 2017, 89, 7886–7892.

    Article  CAS  Google Scholar 

  5. Wu, Y. T.; Shanmugam, C.; Tseng, W. B.; Hiseh, M. M.; Tseng, W. L. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates. Nanoscale 2016, 8, 11210–11216.

    Article  CAS  Google Scholar 

  6. Mukherji, R.; Samanta, A.; Illathvalappil, R.; Chowdhury, S.; Prabhune, A.; Devi, R. N. Selective imaging of quorum sensing receptors in bacteria using fluorescent Au nanocluster probes surface functionalized with signal molecules. ACS Appl. Mater. Interfaces 2013, 5, 13076–13081.

    Article  CAS  Google Scholar 

  7. Nie, L. B.; Xiao, X. Y.; Yang, H. C. Preparation and biomedical applications of gold nanocluster. J. Nanosci. Nanotechnol. 2016, 16, 8164–8175.

    Article  CAS  Google Scholar 

  8. Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H. F.; Jin, R. C. Experimental and computational investigation of Au25 clusters and CO2: A unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 2012, 134, 10237–10243.

    Article  CAS  Google Scholar 

  9. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    Article  CAS  Google Scholar 

  10. Liu, C.; Abroshan, H.; Yan, C. Y.; Li, G.; Haruta, M. One-pot synthesis of Au11(PPh2Py)7Br3 for the highly chemoselective hydrogenation of nitrobenzaldehyde. ACS Catal. 2016, 6, 92–99.

    Article  CAS  Google Scholar 

  11. Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763–1774.

    Article  CAS  Google Scholar 

  12. Liu, M.; Li, H. M.; Wang, W. J. Defective TiO2 with oxygen vacancy and nanocluster modification for efficient visible light environment remediation. Catal. Today 2016, 264, 236–242.

    Article  CAS  Google Scholar 

  13. Kwak, K.; Choi, W.; Tang, Q.; Kim, M.; Lee, Y.; Jiang, D. E.; Lee, D. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 2017, 8, 14723.

    Article  Google Scholar 

  14. Zhang, M.; Frei, H. Towards a molecular level understanding of the multi-electron catalysis of water oxidation on metal oxide surfaces. Catal. Lett. 2015, 145, 420–435.

    Article  CAS  Google Scholar 

  15. Qian, H. F.; Zhu, M. Z.; Wu, Z. K.; Jin, R. C. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470–1479.

    Article  CAS  Google Scholar 

  16. Jin, R. C.; Nobusada, K. Doping and alloying in atomically precise gold nanoparticles. Nano Res. 2014, 7, 285–300.

    Article  CAS  Google Scholar 

  17. Du, X. L.; Wang, X. L.; Li, Y. H.; Wang, Y. L.; Zhao, J. J.; Fang, L. J.; Zheng, L. R.; Tong, H.; Yang, H. G. Isolation of single Pt atoms in a silver cluster: Forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 9402–9405.

    Article  CAS  Google Scholar 

  18. Wang, S. X.; Meng, X. M.; Das, A.; Li, T.; Song, Y. B.; Cao, T. T.; Zhu, X. Y.; Zhu, M. Z.; Jin, R. C. A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25–x nanoclusters: The 13th silver atom matters. Angew. Chem., Int. Ed. 2014, 53, 2376–2380.

    Article  CAS  Google Scholar 

  19. Xiang, J.; Li, P.; Song, Y. B.; Liu, X.; Chong, H. B.; Jin, S.; Pei, Y.; Yuan, X. Y.; Zhu, M. Z. X-ray crystal structure, and optical and electrochemical properties of the Au15Ag3(SC6H11)14 nanocluster with a core-shell structure. Nanoscale 2015, 7, 18278–18283.

    Article  CAS  Google Scholar 

  20. Wan, X. K.; Cheng, X. L.; Tang, Q.; Han, Y. Z.; Hu, G. X.; Jiang, D. E.; Wang, Q. M. Atomically precise bimetallic Au19Cu30 nanocluster with an icosidodecahedral Cu30 shell and an alkynyl-Cu interface. J. Am. Chem. Soc. 2017, 139, 9451–9454.

    Article  CAS  Google Scholar 

  21. Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Harb, M.; Maity, N.; Shkurenko, A.; Parida, M. R.; Hedhili, M. N.; Eddaoudi, M.; Mohammed, O. F. et al. Doping-induced anisotropic self-assembly of silver icosahedra in [Pt2Ag23Cl7(PPh3)10] nanoclusters. J. Am. Chem. Soc. 2017, 139, 1053–1056.

    Article  CAS  Google Scholar 

  22. Chen, T.; Yang, S.; Chai, J. S.; Song, Y. B.; Fan, J. Q.; Rao, B.; Sheng, H. T.; Yu, H. Z.; Zhu, M. Z. Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure. Sci. Adv. 2017, 3, e1700956.

    Article  CAS  Google Scholar 

  23. Yan, J. Z.; Su, H. F.; Yang, H. Y.; Malola, S.; Lin, S. C.; Häkkinen, H.; Zheng, N. F. Total structure and electronic structure analysis of doped thiolated silver [MAg24(SR)18]2-(M = Pd, Pt) clusters. J. Am. Chem. Soc. 2015, 137, 11880–11883.

    Article  CAS  Google Scholar 

  24. Yan, J. Z.; Su, H. F.; Yang, H. Y.; Hu, C. Y.; Malola, S.; Lin, S. C.; Teo, B. K.; Hakkinen, H.; Zheng, N. F. Asymmetric synthesis of chiral bimetallic [Ag28Cu12(SR)24]4- nanoclusters via ion pairing. J. Am. Chem. Soc. 2016, 138, 12751–12754.

    Article  CAS  Google Scholar 

  25. Shen, H.; Mizuta, T. An atomically precise alkynyl-protected PtAg42 superatom nanocluster and its structural implications. Chem. Asian J. 2017, 12, 2904–2907.

    Article  CAS  Google Scholar 

  26. Shen, H.; Mizuta, T. An alkynyl-stabilized Pt5Ag22 cluster featuring a two-dimensional alkynyl-platinum “crucifix motif ”. Chem. Eur. —J. 2017, 23, 17885–17888.

    Article  CAS  Google Scholar 

  27. He, L. Z.; Yuan, J. Y.; Xia, N.; Liao, L. W.; Liu, X.; Gan, Z. B.; Wang, C. M.; Yang, J. L.; Wu, Z. K. Kernel tuning and nonuniform influence on optical and electrochemical gaps of bimetal nanoclusters. J. Am. Chem. Soc. 2018, 140, 3487–3490.

    Article  CAS  Google Scholar 

  28. Guan, Z. J.; Zeng, J. L.; Yuan, S. F.; Hu, F.; Lin, Y. M.; Wang, Q. M. Au57Ag53(C=CPh)40Br12: A large nanocluster with C1 symmetry. Angew. Chem., Int. Ed. 2018, 57, 5703–5707.

    Article  CAS  Google Scholar 

  29. Dharmaratne, A. C.; Dass, A. Au144-xCux(SC6H13)60 nanomolecules: Effect of Cu incorporation on composition and plasmon-like peak emergence in optical spectra. Chem. Commun. 2014, 50, 1722–1724.

    Article  CAS  Google Scholar 

  30. Kang, X.; Xiong, L.; Wang, S. X.; Pei, Y.; Zhu, M. Z. Combining the single-atom engineering and ligand-exchange strategies: Obtaining the single-heteroatom-doped Au16Ag1(S-Adm)13 nanocluster with atomically precise structure. Inorg. Chem. 2018, 57, 335–342.

    Article  CAS  Google Scholar 

  31. Wang, S. X.; Abroshan, H.; Liu, C.; Luo, T. Y.; Zhu, M. Z.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Shuttling single metal atom into and out of a metal nanoparticle. Nat. Commun. 2017, 8, 848.

    Article  CAS  Google Scholar 

  32. Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18]- nanocluster. Angew. Chem., Int. Ed. 2016, 55, 922–926.

    Article  CAS  Google Scholar 

  33. Lin, Y. R.; Kishore, P. V. V. N.; Liao, J. H.; Kahlal, S.; Liu, Y. C.; Chiang, M. H.; Saillard, J. Y.; Liu, C. W. Synthesis, structural characterization and transformation of an eight-electron superatomic alloy, [Au@Ag19{S2P(OPr)2}12]. Nanoscale 2018, 10, 6855–6860.

    Article  CAS  Google Scholar 

  34. Kang, X.; Xiong, L.; Wang, S. X.; Pei, Y.; Zhu, M. Z. De-assembly of assembled Pt1Ag12 units: Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Commun. 2017, 53, 12564–12567.

    Article  CAS  Google Scholar 

  35. Kang, X.; Zhou, M.; Wang, S. X.; Sun, G. D.; Zhu, M. Z.; Jin, R. C. The tetrahedral structure and luminescence properties of bi-metallic Pt1Ag28(SR)18(PPh3)4 nanocluster. Chem. Sci. 2017, 8, 2581–2587.

    Article  CAS  Google Scholar 

  36. Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Harb, M.; Parida, M. R.; Hedhili, M. N.; Mohammed, O. F.; Bakr, O. M.; Cavallo, L.; Basset, J. M. Direct versus ligand-exchange synthesis of [PtAg28(BDT)12(TPP)4]4- nanoclusters: Effect of a single-atom dopant on the optoelectronic and chemical properties. Nanoscale 2017, 9, 9529–9536.

    Article  CAS  Google Scholar 

  37. Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Shkurenko, A.; El-Zohry, A. M.; Mohammed, O. F.; Eddaoudi, M.; Bakr, O. M.; Cavallo, L.; Basset, J. M. Tailoring the crystal structure of nanoclusters unveiled high photoluminescence via ion pairing. Chem. Mater. 2018, 30, 2719–2725.

    Article  CAS  Google Scholar 

  38. Kang, X.; Xiong, L.; Wang, S. X.; Yu, H. Z.; Jin, S.; Song, Y. B.; Chen, T.; Zheng, L. W.; Pan, C. S.; Pei, Y. et al. Shape-controlled synthesis of trimetallic nanoclusters: Structure elucidation and properties investigation. Chem. Eur. — J. 2016, 22, 17145–17150.

    Article  CAS  Google Scholar 

  39. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A 2008, 64, 112–122.

    Article  CAS  Google Scholar 

  40. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C 2015, C71, 3–8.

    Google Scholar 

  41. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.

    Article  CAS  Google Scholar 

  42. AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Del Gobbo, S.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D. E.; Bakr, O. M. Ag29(BDT)12(TPP)4: A tetravalent nanocluster. J. Am. Chem. Soc. 2015, 137, 11970–11975.

    Article  CAS  Google Scholar 

  43. Chakraborty, P.; Nag, A.; Paramasivam, G.; Natarajan, G.; Pradeep, T. Fullerenefunctionalized monolayer-protected silver clusters: [Ag29(BDT)12(C60)n]3- (n = 1–9). ACS Nano 2018, 12, 2415–2425.

    Article  CAS  Google Scholar 

  44. Juarez-Mosqueda, R.; Malola, S.; Häkkinen, H. Stability, electronic structure, and optical properties of protected gold-doped silver Ag29-xAux (x = 0–5) nanoclusters. Phys. Chem. Chem. Phys. 2017, 19, 13868–13874.

    Article  CAS  Google Scholar 

  45. Soldan, G.; Aljuhani, M. A.; Bootharaju, M. S.; AbdulHalim, L. G.; Parida, M. R.; Emwas, A. H.; Mohammed, O. F.; Bakr, O. M. Gold doping of silver nanoclusters: A 26-fold enhancement in the luminescence quantum yield. Angew. Chem., Int. Ed. 2016, 55, 5749–5753.

    Article  CAS  Google Scholar 

  46. Guo, Z. Q.; Park, S.; Yoon, J.; Shin, I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 2014, 43, 16–29.

    Article  Google Scholar 

  47. Wang, Y.; Dai, C.; Yan, X. P. Fabrication of folate bioconjugated near-infrared fluorescent silver nanoclusters for targeted in vitro and in vivo bioimaging. Chem. Commun. 2014, 50, 14341–14344.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21601178) and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA09030103). We thank W. M. Qin and other staff at the Shanghai Synchrotron Radiation Facility for assistance during the crystallographic data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Liu or Jiahui Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Liu, C., Sun, K. et al. Structural isomer and high-yield of Pt1Ag28 nanocluster via one-pot chemical wet method. Nano Res. 12, 309–314 (2019). https://doi.org/10.1007/s12274-018-2216-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2216-4

Keywords

Navigation