Skip to main content

Ultrathin wavy Rh nanowires as highly effective electrocatalysts for methanol oxidation reaction with ultrahigh ECSA

Abstract

Direct methanol fuel cells (DMFCs) have received tremendous research interests because of the facile storage of liquid methanol vs. hydrogen. However, the DMFC today is severely plagued by the poor kinetics and rather high overpotential in methanol oxidation reaction (MOR). Here we report the investigation of the ultrathin Rh wavy nanowires as a highly effective MOR electrocatalyst. We show that ultrathin wavy Rh nanowires can be robustly synthesized with 2–3 nm diameters. Electrochemical studies show a current peak at the potential of 0.61 V vs. reversible hydrogen electrode (RHE), considerably lower than that of Pt based catalysts (~ 0.8–0.9 V vs. RHE). Importantly, with ultrathin diameters and favorable charge transport, the Rh nanowires catalysts exhibit an ultrahigh electrochemically active surface area determined from CO-stripping (ECSACO) of 144.2 m2/g, far exceeding that of the commercial Rh black samples (20 m2/g). Together, the Rh nanowire catalysts deliver a mass activity of 722 mA/mg at 0.61 V, considerably higher than many previously reported electrocatalysts at the same potential. The chronoamperometry studies also demonstrate good stability and CO-tolerance compared with the Rh black control sample, making ultrathin Rh wavy nanowires an attractive electrocatalyst for MOR.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Joghee, P.; Malik, J. N.; Pylypenko, S.; O’Hayre, R. A review on direct methanol fuel cells–In the perspective of energy and sustainability. MRS Energy Sustain. 2015, 2, E3.

    Article  Google Scholar 

  2. [2]

    Yu, E. H.; Krewer, U.; Scott, K. Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 2010, 3, 1499–1528.

    Article  Google Scholar 

  3. [3]

    Lei, M.; Wang, J.; Li, J. R.; Wang, Y. G.; Tang, H. L.; Wang, W. J. Emerging methanol-tolerant AlN nanowire oxygen reduction electrocatalyst for alkaline direct methanol fuel cell. Sci. Rep. 2014, 4, 6013.

    Article  Google Scholar 

  4. [4]

    Wang, D.-W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.

    Article  Google Scholar 

  5. [5]

    Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nat. Commun. 2015, 6, 10035.

    Article  Google Scholar 

  6. [6]

    Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.

    Article  Google Scholar 

  7. [7]

    Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890–5895.

    Article  Google Scholar 

  8. [8]

    Li, H. H.; Fu, Q. Q.; Xu, L.; Ma, S. Y.; Zheng, Y. R.; Liu, X. J.; Yu, S. H. Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis. Energy Environ. Sci. 2017, 10, 1751–1756.

    Article  Google Scholar 

  9. [9]

    Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    Article  Google Scholar 

  10. [10]

    Guerrero, M.; Than Chau, N. T.; Noël, S.; Denicourt-Nowicki, A.; Hapiot, F.; Roucoux, A.; Monflier, E.; Philippot, K. About the use of rhodium nanoparticles in hydrogenation and hydroformylation reactions. Curr. Org. Chem. 2013, 17, 364–399.

    Article  Google Scholar 

  11. [11]

    Cobo, M.; Becerra, J.; Castelblanco, M.; Cifuentes, B.; Conesa, J. A. Catalytic hydrodechlorination of trichloroethylene in a novel NaOH/2- propanol/methanol/water system on ceria-supported Pd and Rh catalysts. J. Environ. Manage. 2015, 158, 1–10.

    Article  Google Scholar 

  12. [12]

    Wang, L. B.; Li, H. L.; Zhang, W. B.; Zhao, X.; Qiu, J. X.; Li, A. W.; Zheng, X. S.; Hu, Z. P.; Si, R.; Zeng, J. Supported rhodium catalysts for ammonia–borane hydrolysis: Dependence of the catalytic activity on the highest occupied state of the single rhodium atoms. Angew. Chem., Int. Ed. 2017, 56, 4712–4718.

    Article  Google Scholar 

  13. [13]

    Parry, I. S.; Kartouzian, A.; Hamilton, S. M.; Balaj, O. P.; Beyer, M. K.; Mackenzie, S. R. Collisional activation of N2O decomposition and COoxidation reactions on isolated rhodium clusters. J. Phys. Chem. A 2013, 117, 8855–8863.

    Article  Google Scholar 

  14. [14]

    Jiang, B.; Li, C. L.; Dag, Ö.; Abe, H.; Takei, T.; Imai, T.; Hossain, M. S. A.; Islam, M. T.; Wood, K.; Henzie, J. et al. Mesoporous metallic rhodium nanoparticles. Nat. Commun. 2017, 8, 15581.

    Article  Google Scholar 

  15. [15]

    Li, L.; Tian, C. X.; Yang, J. S.; Zhang, X. H.; Chen, J. H. One-pot synthesis of PtRh/ß-CD-CNTs for methanol oxidation. Int. J. Hydrogen Energy 2015, 40, 14866–14874.

    Article  Google Scholar 

  16. [16]

    Jurzinsky, T.; Bär, R.; Cremers, C.; Tübke, J.; Elsner, P. Highly active carbon supported palladium-rhodium PdxRh/C catalysts for methanol electrooxidation in alkaline media and their performance in anion exchange direct methanol fuel cells (AEM-DMFCs). Electrochim. Acta 2015, 176, 1191–1201.

    Article  Google Scholar 

  17. [17]

    Chotkowski, M.; Uklejewska, M.; Siwek, H.; Dlubak, J.; Czerwinski, A. Characterization of Pt–Rh–Ru catalysts for methanol oxidation. Funct. Mater. Lett. 2011, 4, 187–191.

    Article  Google Scholar 

  18. [18]

    Jiang, K. Z.; Bu, L. Z.; Wang, P. T.; Guo, S. J.; Huang, X. Q. Trimetallic PtSnRh wavy nanowires as efficient nanoelectrocatalysts for alcohol electrooxidation. ACS Appl. Mater. Interfaces 2015, 7, 15061–15067.

    Article  Google Scholar 

  19. [19]

    Kang, Y. Q.; Li, F. M.; Li, S. N.; Ji, P. J.; Zeng, J. H.; Jiang, J. X.; Chen, Y. Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium. Nano Res. 2016, 9, 3893–3902.

    Article  Google Scholar 

  20. [20]

    Kang, Y. Q.; Xue, Q.; Jin, P. J.; Jiang, J. X.; Zeng, J. H.; Chen, Y. Rhodium nanosheets–reduced graphene oxide hybrids: A highly active platinumalternative electrocatalyst for the methanol oxidation reaction in alkaline media. ACS Sustain. Chem. Eng. 2017, 5, 10156–10162.

    Article  Google Scholar 

  21. [21]

    Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Chiu, C. Y.; Ruan, L. Y.; Liu, Y.; Li, M. F.; Duan, X. F.; Huang, Y. High density catalytic hot spots in ultrafine wavy nanowires. Nano Lett. 2014, 14, 3887–3894.

    Article  Google Scholar 

  22. [22]

    Durst, J.; Simon, C.; Hasché, F.; Gasteiger, H. A. Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 2015, 162, F190–F203.

    Article  Google Scholar 

  23. [23]

    Hofstead-Duffy, A. M.; Chen, D. J.; Sun, S. G.; Tong, Y. J. Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: A revisit to the current ratio criterion. J. Mater. Chem. 2012, 22, 5205–5208.

    Article  Google Scholar 

  24. [24]

    Chung, D. Y.; Lee, K. J.; Sung, Y. E. Methanol electro-oxidation on the Pt surface: Revisiting the cyclic voltammetry interpretation. J. Phys. Chem. C 2016, 120, 9028–9035.

    Article  Google Scholar 

  25. [25]

    Mikkelsen, K.; Cassidy, B.; Hofstetter, N.; Bergquist, L.; Taylor, A.; Rider, D. A. Block copolymer templated synthesis of core–shell PtAu bimetallic nanocatalysts for the methanol oxidation reaction. Chem. Mater. 2014, 26, 6928–6940.

    Article  Google Scholar 

  26. [26]

    Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. A 2004, 108, 17886–17892.

    Article  Google Scholar 

  27. [27]

    Ren, F. F.; Wang, C. Q.; Zhai, C. Y.; Jiang, F. X.; Yue, R. R.; Du, Y. K.; Yang, P.; Xu, J. K. One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium. J. Mater. Chem. A 2013, 1, 7255–7261.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Office of Naval Research Office under the grant number N00014-18–1–2491.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yu Huang or Xiangfeng Duan.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Zhao, Z., Wan, C. et al. Ultrathin wavy Rh nanowires as highly effective electrocatalysts for methanol oxidation reaction with ultrahigh ECSA. Nano Res. 12, 211–215 (2019). https://doi.org/10.1007/s12274-018-2204-8

Download citation

Keywords

  • rhodium
  • nanowires
  • electrocatalysis
  • MOR (methanol oxidation reaction)