Skip to main content

In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity

Abstract

The research of ultraviolet photodetectors (UV PDs) have been attracting extensive attention, due to their important applications in many areas. In this study, PtSe2/GaN heterojunction is in-situ fabricated by synthesis of large-area vertically standing two-dimensional (2D) PtSe2 film on n-GaN substrate. The PtSe2/GaN heterojunction device demonstrates excellent photoresponse properties under illumination by deep UV light of 265 nm at zero bias voltage. Further analysis reveals that a high responsivity of 193 mA·W–1, an ultrahigh specific detectivity of 3.8 × 1014 Jones, linear dynamic range of 155 dB and current on/off ratio of ~ 108, as well as fast response speeds of 45/102 μs were obtained at zero bias voltage. Moreover, this device response quickly to the pulse laser of 266 nm with a rise time of 172 ns. Such high-performance PtSe2/GaN heterojunction UV PD demonstrated in this work is far superior to previously reported results, suggesting that it has great potential for deep UV detection.

References

  1. [1]

    Zhang, X.; Cheng, H. F.; Zhang, H. Recent progress in the preparation, assembly, transformation, and applications of layer-structured nanodisks beyond graphene. Adv. Mater. 2017, 29, 1701704.

    Article  Google Scholar 

  2. [2]

    Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    Article  Google Scholar 

  3. [3]

    Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    Article  Google Scholar 

  4. [4]

    Zhu, Z. L.; Cai, X. L.; Yi, S.; Chen, J. L.; Dai, Y. W.; Niu, C. Y.; Guo, Z. X.; Xie, M. H.; Liu, F.; Cho, J. H. et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys. Rev. Lett. 2017, 119, 106101.

    Article  Google Scholar 

  5. [5]

    Xie, C.; Mak, C.; Tao, X. M.; Yan, F. Photodetectors based on twodimensional layered materials beyond graphene. Adv. Funct. Mater. 2017, 27, 1603886.

    Article  Google Scholar 

  6. [6]

    Zhao, Y. D.; Qiao, J. S.; Yu, Z. H.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X. R.; Ji, W. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.

    Article  Google Scholar 

  7. [7]

    Feng, Z. H.; Xie, Y.; Chen, J. C.; Yu, Y. Y.; Zheng, S. J.; Zhang, R.; Li, Q. N.; Chen, X. J.; Sun, C. L.; Zhang, H. et al. Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing. 2D Mater. 2017, 4, 025018.

    Article  Google Scholar 

  8. [8]

    Wu, D.; Lou, Z. H.; Wang, Y. G.; Xu, T. T.; Shi, Z. F.; Xu, J. M.; Tian, Y. T.; Li, X. J. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor. Nanotechnology 2017, 28, 435503.

    Article  Google Scholar 

  9. [9]

    Lou, Z. H.; Zeng, L. H.; Wang, Y. G.; Wu, D.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared. Opt. Lett. 2017, 42, 3335–3338.

    Article  Google Scholar 

  10. [10]

    Lee, S. Y.; Duong, D. L.; Vu, Q. A.; Jin, Y.; Kim, P.; Lee, Y. H. Chemically modulated band gap in bilayer graphene memory transistors with high on/off ratio. ACS Nano 2015, 9, 9034–9042.

    Article  Google Scholar 

  11. [11]

    Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet–visible to infrared. Small 2017, 13, 1700894.

    Article  Google Scholar 

  12. [12]

    Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403–433.

    Article  Google Scholar 

  13. [13]

    Wang, Y. M.; Ding, K.; Sun, B. Q.; Lee, S. T.; Jie, J. S. Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Res. 2016, 9, 72–93.

    Article  Google Scholar 

  14. [14]

    Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    Article  Google Scholar 

  15. [15]

    Kong, W. Y.; Wu, G. A.; Wang, K. Y.; Zhang, T. F.; Zou, Y. F.; Wang, D. D.; Luo, L. B. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater. 2016, 28, 10725–10731.

    Article  Google Scholar 

  16. [16]

    Rieke, G. H. Detection of Light: From the Ultraviolet to the Submillimeter, 2nd ed.; Cambridge University Press: Cambridge, 2003.

    Google Scholar 

  17. [17]

    Su, L. X.; Yang, W.; Cai, J.; Chen, H. Y.; Fang, X. S. Self-powered ultraviolet photodetectors driven by built-in electric field. Small 2017, 13, 1701687.

    Article  Google Scholar 

  18. [18]

    Son, S. B.; Kim, Y.; Kim, A.; Cho, B.; Hong, W. K. Ultraviolet wavelengthdependent optoelectronic properties in two-dimensional NbSe2-WSe2 van der Waals heterojunction-based field-effect transistors. ACS Appl. Mater. Interfaces 2017, 9, 41537–41545.

    Article  Google Scholar 

  19. [19]

    Peng, M. Z.; Liu, Y. D.; Yu, A. F.; Zhang, Y.; Liu, C. H.; Liu, J. Y.; Wu, W.; Zhang, K.; Shi, X. Q.; Kou, J. Z. et al. Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 2016, 10, 1572–1579.

    Article  Google Scholar 

  20. [20]

    Peng, L.; Hu, L. F.; Fang, X. S. Low-dimensional nanostructure ultraviolet photodetectors. Adv. Mater. 2013, 25, 5321–5328.

    Article  Google Scholar 

  21. [21]

    Ouyang, W. X.; Teng, F.; Fang, X. S. High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction uv photodetector: The influences of self-induced inner electric fields in the BiOCl nanosheets. Adv. Funct. Mater. 2018, 28, 1707178.

    Article  Google Scholar 

  22. [22]

    Ning, Y.; Zhang, Z. M.; Teng, F.; Fang, X. S. Novel transparent and selfpowered UV photodetector based on crossed ZnO nanofiber array homojunction. Small 2018, 14, 1703754.

    Article  Google Scholar 

  23. [23]

    Zhao, B.; Wang, F.; Chen, H. Y.; Zheng, L. X.; Su, L. X.; Zhao, D. X.; Fang, X. S. An ultrahigh responsivity (9.7 mA W−1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater. 2017, 27, 1700264.

    Article  Google Scholar 

  24. [24]

    Chen, H. Y.; Yu, P. P.; Zhang, Z. Z.; Teng, F.; Zheng, L. X.; Hu, K.; Fang, X. S. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small 2016, 12, 5809–5816.

    Article  Google Scholar 

  25. [25]

    Zhao, B.; Wang, F.; Chen, H. Y.; Wang, Y. P.; Jiang, M. M.; Fang, X. S.; Zhao, D. X. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire. Nano Lett. 2015, 15, 3988–3993.

    Article  Google Scholar 

  26. [26]

    Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  Google Scholar 

  27. [27]

    Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L. J. Epitaxial growth of twodimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134–6150.

    Article  Google Scholar 

  28. [28]

    Yim, C.; Lee, K.; McEvoy, N.; O'Brien, M.; Riazimehr, S.; Berner, N. C.; Cullen, C. P.; Kotakoski, J.; Meyer, J. C.; Lemme, M. C. et al. Highperformance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 2016, 10, 9550–9558.

    Article  Google Scholar 

  29. [29]

    Lin, S. H.; Liu, Y.; Hu, Z. X.; Lu, W.; Mak, C. H.; Zeng, L. H.; Zhao, J.; Li, Y. Y.; Yan, F.; Tsang, Y. H. et al. Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction. Nano Energy 2017, 42, 26–33.

    Article  Google Scholar 

  30. [30]

    Sajjad, M.; Montes, E.; Singh, N.; Schwingenschlögl, U. Superior gas sensing properties of monolayer PtSe2. Adv. Mater. Interfaces 2017, 4, 1600911.

    Article  Google Scholar 

  31. [31]

    Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

    Article  Google Scholar 

  32. [32]

    Wagner, S.; Yim, C.; McEvoy, N.; Kataria, S.; Yokaribas, V.; Kuc, A.; Pindl, S.; Fritzen, C. P.; Heine, T.; Duesberg, G. S. et al. Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 2018, 18, 3738–3745.

    Article  Google Scholar 

  33. [33]

    AlMutairi, A.; Yin, D. M.; Yoon, Y. PtSe2 field-effect transistors: New opportunities for electronic devices. IEEE Electron Device Lett. 2018, 39, 151–154.

    Article  Google Scholar 

  34. [34]

    Zeng, L. H.; Lin, S. H.; Lou, Z. H.; Yuan, H. Y.; Long, H.; Li, Y. Y.; Lu, W.; Lau, S. P.; Wu, D.; Tsang, Y. H. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 2018, 10, 352–362.

    Article  Google Scholar 

  35. [35]

    Zhang, Z. X.; Tong, X. W.; Gao, Y.; Xie, C.; Tsang, Y. H.; Luo, L. B.; Wu, Y. C. Ultrafast, self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J. Phys. Chem. Lett. 2018, 9, 1185–1194.

    Article  Google Scholar 

  36. [36]

    Yim, C.; McEvoy, N.; Riazimehr, S.; Schneider, D. S.; Gity, F.; Monaghan, S.; Hurley, P. K.; Lemme, M. C.; Duesberg, G. S. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett. 2018, 18, 1794–1800.

    Article  Google Scholar 

  37. [37]

    Xie, C.; Zeng, L. H.; Zhang, Z. X.; Tsang, Y. H.; Luo, L. B.; Lee, J. H. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale 2018, 10, 15285–15293.

    Article  Google Scholar 

  38. [38]

    Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.

    Article  Google Scholar 

  39. [39]

    Wang, Z. G.; Li, Q.; Besenbacher, F.; Dong, M. D. Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 2016, 28, 10224–10229.

    Article  Google Scholar 

  40. [40]

    Kung, S. C.; van der Veer, W. E.; Yang, F.; Donavan, K. C.; Penner, R. M. 20 μs photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires. Nano Lett. 2010, 10, 1481–1485.

    Article  Google Scholar 

  41. [41]

    Liu, J. M. Photonic Devices; Cambridge University Press: Cambridge, 2005.

    Book  Google Scholar 

  42. [42]

    Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S. H. et al. High photoresponsivity in an all-graphene p-n vertical junction photodetector. Nat. Commun. 2014, 5, 3249.

    Article  Google Scholar 

  43. [43]

    Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed Van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.

    Article  Google Scholar 

  44. [44]

    Chowdhury, R. K.; Maiti, R.; Ghorai, A.; Midya, A.; Ray, S. K. Novel silicon compatible p-WS2 2D/3D heterojunction devices exhibiting broadband photoresponse and superior detectivity. Nanoscale 2016, 8, 13429–13436.

    Article  Google Scholar 

  45. [45]

    Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649–1654.

    Article  Google Scholar 

  46. [46]

    Li, X. M.; Zhu, M.; Du, M. D.; Lv, Z.; Zhang, L.; Li, Y. C.; Yang, Y.; Yang, T. T.; Li, X.; Wang, K. L. et al. High detectivity graphene-silicon heterojunction photodetector. Small 2016, 12, 595–601.

    Article  Google Scholar 

  47. [47]

    Wan, X.; Xu, Y.; Guo, H. W.; Shehzad, K.; Ali, A.; Liu, Y.; Yang, J. Y.; Dai, D. X.; Lin, C. T.; Liu, L. W. et al. A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: Breaking the limit of silicon? NPJ 2D Mater. Appl. 2017, 1, 4.

    Article  Google Scholar 

  48. [48]

    Wang, Y. L.; Li, L. F.; Yao, W.; Song, S. R.; Sun, J. T.; Pan, J. B.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y. Q. et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013–4018.

    Article  Google Scholar 

  49. [49]

    Zhuo, R. R.; Wang, Y. G.; Wu, D.; Lou, Z. H.; Shi, Z. F.; Xu, T. T.; Xu, J. M.; Tian, Y. T.; Li, X. J. High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p–n heterojunction. J. Mater. Chem. C 2018, 6, 299–303.

    Article  Google Scholar 

  50. [50]

    Chu, J. W.; Wang, F. M.; Yin, L.; Lei, L.; Yan, C. Y.; Wang, F.; Wen, Y.; Wang, Z. X.; Jiang, C.; Feng, L. P. et al. High-performance ultraviolet photodetector based on a few-layered 2D NiPS3 nanosheet. Adv. Funct. Mater. 2017, 27, 1701342.

    Article  Google Scholar 

  51. [51]

    Zheng, W.; Lin, R. C.; Zhang, Z. J.; Huang, F. Vacuum-ultraviolet photodetection in few-layered h-BN. ACS Appl. Mater. Interfaces 2018, 10, 27116–27123.

    Article  Google Scholar 

  52. [52]

    Zheng, W.; Lin, R. C.; Zhu, Y. M.; Zhang, Z. J.; Ji, X.; Huang, F. Vacuum ultraviolet photodetection in two-dimensional oxides. ACS Appl. Mater. Interfaces 2018, 10, 20696–20702.

    Article  Google Scholar 

  53. [53]

    Zeng, L. H.; Tao, L. L.; Tang, C. Y.; Zhou, B.; Long, H.; Chai, Y.; Lau, S. P.; Tsang, Y. H. High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Sci. Rep. 2016, 6, 20343.

    Article  Google Scholar 

  54. [54]

    Gundimeda, A.; Krishna, S.; Aggarwal, N.; Sharma, A.; Sharma, N. D.; Maurya, K. K.; Husale, S.; Gupta, G. Fabrication of non-polar GaN based highly responsive and fast UV photodetector. Appl. Phys. Lett. 2017, 110, 103507.

    Article  Google Scholar 

  55. [55]

    Teng, F.; Ouyang, W. X.; Li, Y. M.; Zheng, L. X.; Fang, X. S. Novel structure for high performance uv photodetector based on BiOCl/ZnO hybrid film. Small 2017, 13, 1700156.

    Article  Google Scholar 

  56. [56]

    Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

    Article  Google Scholar 

  57. [57]

    Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 61605174 and 61774136), the Key Projects of Higher Education in Henan Province (No. 17A140012) and Research Grants Council, University Grants Committee (RGC, UGC) (GRF 152109/16E PolyU B-Q52T).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Di Wu, Xinjian Li or Yuen Hong Tsang.

Electronic supplementary material

12274_2018_2200_MOESM1_ESM.pdf

In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuo, R., Zeng, L., Yuan, H. et al. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 12, 183–189 (2019). https://doi.org/10.1007/s12274-018-2200-z

Download citation

Keywords

  • PtSe2
  • heterojunction
  • deep ultraviolet
  • photodetectors
  • self-powered