Nano Research

, Volume 12, Issue 1, pp 171–176 | Cite as

Few-layer formamidinium lead bromide nanoplatelets for ultrapure-green and high-efficiency light-emitting diodes

  • Huan Fang
  • Wei Deng
  • Xiujuan ZhangEmail author
  • Xiuzhen Xu
  • Meng Zhang
  • Jiansheng Jie
  • Xiaohong ZhangEmail author
Research Article


Formamidinium lead bromide perovskite (FAPbBr3) nanocrystals have attracted increasing attention due to their greener photoluminescence (PL) and higher thermal stability in comparison to more popular methylammonium lead bromide perovskite (MAPbBr3). Here we proposed a facile and highly reproducible room-temperature method for the preparation of few-layer (1–4) two-dimensional (2D) FAPbBr3 nanoplatelets (NPs) with ultrapure green PL at 532 nm and high photoluminescence quantum yield (PLQY) of 88%. High-efficiency ultrapure green light-emitting diodes (LEDs) based on the few-layer 2D FAPbBr3 NPs were further demonstrated. The LEDs showed a maximum current efficiency (CE) of 15.31 cd/A and an external quantum efficiency (EQE) of 3.53%, which are significantly better than the FAPbBr3 polycrystalline film-based LEDs reported so far. Significantly, the 2D FAPbBr3 NPs-based LEDs exhibited an ultrapure-green color emission that could cover 97% of the Recommendation 2020 (Rec. 2020) color standard and 114% of the national television system committee (NTSC) standard in the CIE 1931 color space. Moreover, the devices possessed a much better stability than the MAPbBr3 nanocrystals-based LEDs in air; the half lifetime T50 of our devices was about 5 times longer than that of MAPbBr3 nanocrystals-based LEDs. This work demonstrates the great potential of FAPbBr3 NPs in light-emitting devices for future ultrahigh-resolution displays.


formamidinium lead bromide perovskite few-layer nanoplatelets high-efficiency light-emitting diodes ultrapure-green electroluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Basic Research Program of China (No. 2016YFA0202400), the National Natural Science Foundation of China (Nos. 51672180, 51622306, and 21673151), Collaborative Innovation Center of Suzhou Nano Science & Technology, Qing Lan Project, 111 project, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Supplementary material

12274_2018_2197_MOESM1_ESM.pdf (2.6 mb)
Few-layer formamidinium lead bromide nanoplatelets for ultrapure-green and high-efficiency light-emitting diodes


  1. [1]
    Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016, 28, 6804–6834.CrossRefGoogle Scholar
  2. [2]
    Wu, X. X.; Trinh, M. T.; Niesner, D.; Zhu, H. M.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X. Y. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 2015, 137, 2089–2096.CrossRefGoogle Scholar
  3. [3]
    Deng, W.; Fang, H.; Jin, X. C.; Zhang, X. J.; Zhang X. H.; Jie, J. S. Organic-inorganic hybrid perovskite quantum dots for light-emitting diodes. J. Mater. Chem. C 2018, 6, 4831–4841.CrossRefGoogle Scholar
  4. [4]
    Li, G. R.; Tan, Z. K.; Di, D. W.; Lai, M. L.; Jiang, L.; Lim, J. H. W.; Friend, R. H.; Greenham, N. C. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 2015, 15, 2640–2644.CrossRefGoogle Scholar
  5. [5]
    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Bertolotti, F.; Masciocchi, N.; Guagliardi, A.; Kovalenko, M. V. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence. J. Am. Chem. Soc. 2016, 138, 14202–14205.CrossRefGoogle Scholar
  6. [6]
    Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.CrossRefGoogle Scholar
  7. [7]
    Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.CrossRefGoogle Scholar
  8. [8]
    Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.CrossRefGoogle Scholar
  9. [9]
    Huang, H. L.; Zhao, F. C.; Liu, L. G.; Zhang, F.; Wu, X. G.; Shi, L. J.; Zou, B. S.; Pei Q. B.; Zhong, H. Z. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient lightemitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128–28133.CrossRefGoogle Scholar
  10. [10]
    Shi, Z. F.; Li, Y.; Zhang, Y. T.; Chen, Y. S.; Li, X. J.; Wu, D.; Xu, T. T.; Shan, C. X.; Du, G. T. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Lett. 2017, 17, 313–321.CrossRefGoogle Scholar
  11. [11]
    Yang, X. L.; Zhang, X. W.; Deng, J. X.; Chu, Z. M.; Jiang, Q.; Meng, J. H.; Wang, P. Y.; Zhang, L. Q.; Yin, Z. G.; You, J. B. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 570.CrossRefGoogle Scholar
  12. [12]
    Cho, H.; Kim, J. S.; Wolf, C.; Kim, Y. H.; Yun, H. J.; Jeong, S. H.; Sadhanala, A.; Venugopalan, V.; Choi, J. W.; Lee, C. L. et al. High-efficiency polycrystalline perovskite light-emitting diodes based on mixed cations. ACS Nano 2018, 12, 2883–2892.CrossRefGoogle Scholar
  13. [13]
    Deng, W.; Xu, X. Z.; Zhang, X. J.; Zhang, Y. D.; Jin, X. C.; Wang, L.; Lee, S. T.; Jie, J. S. Organometal halide perovskite quantum dot light-emitting diodes. Adv. Funct. Mater. 2016, 26, 4797–4802.CrossRefGoogle Scholar
  14. [14]
    Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.CrossRefGoogle Scholar
  15. [15]
    Li, G. R.; Rivarola, F. W. R.; Davis, N J. L. K.; Bai, K. S.; Jellicoe, T C.; de la Peña, F.; Hou, S. C.; Ducati, C.; Gao, F.; Friend, R. H. et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 2016, 28, 3528–3534.CrossRefGoogle Scholar
  16. [16]
    Xing, J.; Yan, F.; Zhao, Y. W.; Chen, S.; Yu, H. K.; Zhang, Q.; Zeng, R. G.; Demir, H. V.; Sun, X. W.; Huan, A. et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano 2016, 10, 6623–6630.CrossRefGoogle Scholar
  17. [17]
    Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xu, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.CrossRefGoogle Scholar
  18. [18]
    Zhao, L. F.; Yeh, Y. W.; Tran, N. L.; Wu, F.; Xiao, Z. G.; Kerner, R. A.; Lin, Y. L.; Scholes, G. D.; Yao, N.; Rand, B. P. In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices. ACS Nano 2017, 11, 3957–3964.CrossRefGoogle Scholar
  19. [19]
    Lee, J. W.; Choi, Y. J.; Yang, J. M.; Ham, S.; Jeon, S. K.; Lee, J. Y.; Song, Y. H.; Ji, E. K.; Yoon, D. H.; Seo, S. et al. In-situ formed type I nanocrystalline perovskite film for highly efficient light-emitting diode. ACS Nano 2017, 11, 3311–3319.CrossRefGoogle Scholar
  20. [20]
    Zhao, F. C.; Chen, D.; Chang, S.; Huang, H. L.; Tong, K.; Xiao, C. T.; Chou, S. Y.; Zhong H. Z.; Pei, Q. B. Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowirepolymer composite electrode. J. Mater. Chem. C 2017, 5, 531–538.CrossRefGoogle Scholar
  21. [21]
    Pan, J.; Quan, L. N.; Zhao, Y. B.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M. J.; Sinatra, L.; Alyami, N. M.; Liu, J. K. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718–8725.CrossRefGoogle Scholar
  22. [22]
    Jin, X. C.; Zhang, X. J.; Fang, H.; Deng, W.; Xu, X. Z.; Jie, J. S.; Zhang, X. H. Facile assembly of high-quality organic-inorganic hybrid perovskite quantum dot thin films for bright light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1705189.CrossRefGoogle Scholar
  23. [23]
    Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith; H. J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988.CrossRefGoogle Scholar
  24. [24]
    Li, Q. H.; Li, H. Y.; Shen, H. B.; Wang, F. F.; Zhao, F.; Li, F.; Zhang, X. G.; Li, D. Y.; Jin, X.; Sun, W. F. Solid ligand-assisted storage of air-stable formamidinium lead halide quantum dots via restraining the highly dynamic surface toward brightly luminescent light-emitting diodes. ACS Photonics 2017, 4, 2504–2512.CrossRefGoogle Scholar
  25. [25]
    Levchuk, L.; Osvet, A.; Tang, X. F.; Brandl, M.; Perea, J. D.; Hoegl, F.; Matt, G. J.; Hock, R.; Batentschuk, M.; Brabec, C. J. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett. 2017, 17, 2765–2770.CrossRefGoogle Scholar
  26. [26]
    Meng, L.; Yao, E. P.; Hong, Z. R.; Chen, H. J.; Sun, P. Y.; Yang, Z. L.; Li, G.; Yang, Y. Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage. Adv. Mater. 2017, 29, 1603826.CrossRefGoogle Scholar
  27. [27]
    Perumal, A.; Shendre, S.; Li, M. J.; Tay, Y. K. E.; Sharma, V. K.; Chen, S.; Wei, Z. H.; Liu, Q.; Gao, Y.; Buenconsejo, P. J. S. et al. High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Sci. Rep. 2016, 6, 36733.CrossRefGoogle Scholar
  28. [28]
    Kumar, S.; Jagielski, J.; Kallikounis, N.; Kim, Y. H.; Wolf, C.; Jenny, F.; Tian, T.; Hofer, C. J.; Chiu, Y. C.; Stark, W. J. et al. Ultrapure green lightemitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano Lett. 2017, 17, 5277–5284.CrossRefGoogle Scholar
  29. [29]
    Hanusch, F. C.; Wiesenmayer, E.; Mankel, E.; Binek, A.; Angloher, P.; Fraunhofer, C.; Giesbrecht, N.; Feckl, J. M.; Jaegermann, W.; Johrendt, D. et al. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J. Phys. Chem. Lett. 2014, 5, 2791–2795.CrossRefGoogle Scholar
  30. [30]
    Minh, D. N.; Kim, J.; Hyon, J.; Sim, J. H.; Sowlih, H. H.; Seo, C.; Nam, J.; Eom, S.; Suk, S.; Lee, S. et al. Room-temperature synthesis of widely tunable formamidinium lead halide perovskite nanocrystals. Chem. Mater. 2017, 29, 5713–5719.CrossRefGoogle Scholar
  31. [31]
    Arora, N.; Dar, M. I.; Abdi-Jalebi, M.; Giordano, F.; Pellet, N.; Jacopin, G.; Friend, R. H.; Zakeeruddin, S. M.; Grätzel, M. Intrinsic and extrinsic stability of formamidinium lead bromide perovskite solar cells yielding high photovoltage. Nano Lett. 2016, 16, 7155–7162.CrossRefGoogle Scholar
  32. [32]
    Nan, W. N.; Niu, Y.; Qin, H. Y.; Cui, F.; Yang, Y.; Lai, R. C.; Lin, W. Z.; Peng, X. G. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 2012, 134, 19685–19693.CrossRefGoogle Scholar
  33. [33]
    Zhang, L. Q.; Yang, X. L.; Jiang, Q.; Wang, P. Y.; Yin, Z. G.; Zhang, X. W.; Tan, H. R.; Yang, Y.; Wei, M. Y.; Sutherland, B. R. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat Commun. 2017, 8, 15640.CrossRefGoogle Scholar
  34. [34]
    Han, Q. J.; Wu, W. Z.; Liu, W. L.; Yang, Q. X.; Yang, Y. Q. Temperaturedependent photoluminescence of CsPbX3 nanocrystal films. J. Lumin. 2018, 198, 350–356.CrossRefGoogle Scholar
  35. [35]
    Yang, Z.; Wang, M. Q.; Qiu, H. M.; Yao, X.; Lao, X. Z.; Xu, S. J.; Lin, Z. H.; Sun, L. Y.; Shao, J. Y. Engineering the exciton dissociation in quantumconfined 2D CsPbBr3 nanosheet films. Adv. Funct. Mater. 2018, 28, 1705908.CrossRefGoogle Scholar
  36. [36]
    Galkowski, K.; Mitioglu, A.; Miyata, A.; Plochocka, P.; Portugall, O.; Eperon, G. E.; Wang, J. T. W.; Stergiopoulos, T.; Stranks, S. D.; Snaith, H. J. et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 2016, 9, 962–970.CrossRefGoogle Scholar
  37. [37]
    Yang, X. Y.; Mutlugun, E.; Dang, C.; Dev, K.; Gao, Y.; Tan, S. T.; Sun, X. W.; Demir, H. V. Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers. ACS Nano 2014, 8, 8224–8231.CrossRefGoogle Scholar
  38. [38]
    Castan, A.; Kim, H. M.; Jang, J. All-solution-processed inverted quantum-dot light-emitting diodes. ACS Appl. Mater. Interfaces 2014, 6, 2508–2515.CrossRefGoogle Scholar
  39. [39]
    Tanaka, D.; Sasabe, H.; Li, Y. J.; Su, S. J.; Takeda, T.; Kido, J. Ultra high efficiency green organic light-emitting devices. Jpn. J. Appl. Phys. 2007, 46, L10–L12.CrossRefGoogle Scholar
  40. [40]
    Jou, J. H.; Li, C. J.; Shen, S. M.; Peng, S. H.; Chen, Y. L.; Jou, Y. C.; Hong, J. H.; Chin, C. L.; Shyue, J. J.; Chen, S. P. et al. Highly efficient green organic light emitting diode with a novel solution processable iridium complex emitter. J. Mater. Chem. C 2013, 1, 4201–4208.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouChina

Personalised recommendations