Advertisement

Nano Research

, Volume 12, Issue 1, pp 91–99 | Cite as

Orientation-controlled, low-temperature plasma growth and applications of h-BN nanosheets

  • Ivan Sergeevich MerenkovEmail author
  • Mikhail Sergeevich Myshenkov
  • Yuri Mikhailovich Zhukov
  • Yohei Sato
  • Tatyana Sergeevna Frolova
  • Denis Vasilevich Danilov
  • Igor Alekseevich Kasatkin
  • Oleg Sergeevich Medvedev
  • Roman Vladimirovich Pushkarev
  • Olga Ivanovna Sinitsyna
  • Masami Terauchi
  • Irina Alekseevna Zvereva
  • Marina Leonidovna Kosinova
  • Ken Ostrikov
Research Article
  • 244 Downloads

Abstract

Dimensionality and orientation of hexagonal boron nitride (h-BN) nanosheets are promising to create and control their unique properties for diverse applications. However, low-temperature deposition of vertically oriented h-BN nanosheets is a significant challenge. Here we report on the low-temperature plasma synthesis of maze-like h-BN nanowalls (BNNWs) from a mixture of triethylamine borane (TEAB) and ammonia at temperatures as low as 400 °C. The maze-like BNNWs contained vertically aligned stacks of h-BN nanosheets. Wavy h-BN nanowalls with randomly oriented nanocrystalline structure are also fabricated. Simple and effective control of morphological type of BNNWs by the deposition temperature is demonstrated. Despite the lower synthesis temperature, thermal stability and oxidation resistivity of the maze-like BNNWs are higher than for the wavy nanowalls. The structure and oxidation of the nanowalls was found to be the critical factor for their thermal stability and controlled luminescence properties. Cytotoxic study demonstrated significant antibacterial effect of both maze-like and wavy h-BN nanowalls against E. coli. The reported results reveal a significant potential of h-BN nanowalls for a broad range of applications from electronics to biomedicine.

Keywords

boron nitride nanosheets nanowalls chemical vapor deposition cytotoxicity light emission thermal stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The reported research was funded by Russian Foundation for Basic Research and the government of the Novosibirsk region of the Russian Federation (No. 18-43-543003). The project was partially performed in the resource centers of Scientific Park of Saint-Petersburg State University, in particular, Center for X-ray Diffraction Studies, Thermogravimetric and Calorimetric Research Center, Center for Physical Methods of Surface Investigation and Nanotechnology Interdisciplinary Center. K. O. thanks the Australian Research Council for partial support, UrFU for the access to scientific equipment of Laboratory “Nanocrystal” supported by Act 211 Government of the RF (No. 02.A03.21.0006).

Supplementary material

12274_2018_2185_MOESM1_ESM.pdf (2.2 mb)
Orientation-controlled, low-temperature plasma growth and applications of h-BN nanosheets

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959.CrossRefGoogle Scholar
  3. [3]
    Falin, A.; Cai, Q.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S. M.; Watanabe, K.; Taniguchi, T. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815.CrossRefGoogle Scholar
  4. [4]
    Li, L. H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 2014, 8, 1457–1462.CrossRefGoogle Scholar
  5. [5]
    Haubner, R.; Wilhelm, M.; Weissenbacher, R.; Lux, B. Boron nitrides— Properties, synthesis and applications. In High Performance Non-Oxide Ceramics. II. Structure and Bonding; Jansen, M., Ed.; Springer: Berlin, Heidelberg, Germany, 2002; pp 1–45.Google Scholar
  6. [6]
    Li, L. H.; Chen, Y.; Cheng, B.-M.; Lin, M.-Y.; Chou, S.-L.; Peng, Y.-C. Photoluminescence of boron nitride nanosheets exfoliated by ball milling. Appl. Phys. Lett. 2012, 100, 261108.CrossRefGoogle Scholar
  7. [7]
    Weng, Q. H.; Wang, X. B.; Wang, X.; Bando, Y.; Golberg, D. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989–4012.CrossRefGoogle Scholar
  8. [8]
    Mateti, S.; Wong, C. S.; Liu, Z.; Yang, W. R.; Li, Y. C.; Li, L. H.; Chen, Y. Biocompatibility of boron nitride nanosheets. Nano Res. 2018, 11, 334–342.CrossRefGoogle Scholar
  9. [9]
    Sun, M. M.; Dong, J. C.; Lv, Y.; Zhao, S. Q.; Meng, C. X.; Song, Y. J.; Wang, G. X.; Li, J. F.; Fu, Q.; Tian, Z. Q. et al. Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells. Nano Res. 2018, 11, 3490–3498.CrossRefGoogle Scholar
  10. [10]
    Sun, M. M.; Fu, Q.; Gao, L. J.; Zheng, Y. P.; Li, Y. Y.; Chen, M. S.; Bao, X. H. Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core–shell nanoreactors. Nano Res. 2017, 10, 1403–1412.CrossRefGoogle Scholar
  11. [11]
    Li, L.; Li, L. H.; Ramakrishnan, S.; Dai, X. J.; Nicholas, K.; Chen, Y.; Chen, Z. Q.; Liu, X. W. Controlling wettability of boron nitride nanotube films and improved cell proliferation. J. Phys. Chem. C 2012, 116, 18334–18339.CrossRefGoogle Scholar
  12. [12]
    Cai, Q. R.; Mateti, S.; Watanabe, K.; Taniguchi, T.; Huang, S. M.; Chen, Y.; Li, L. H. Boron nitride nanosheet-veiled gold nanoparticles for surfaceenhanced raman scattering. ACS Appl. Mater. Interfaces 2016, 8, 15630–15636.CrossRefGoogle Scholar
  13. [13]
    Cai, Q. R.; Mateti, S.; Yang, W. R.; Jones, R.; Watanabe, K.; Taniguchi, T.; Huang, S. M.; Chen, Y.; Li, L. H. Boron nitride nanosheets improve sensitivity and reusability of surface-enhanced Raman spectroscopy. Angew. Chem., Int. Ed. 2016, 55, 8405–8409.CrossRefGoogle Scholar
  14. [14]
    Wu, Y. H.; Shen, Z. X.; Yu, T. Two-Dimensional Carbon: Fundamental Properties, Synthesis, Characterization, and Applications; CRC Press: Boca Raton, FL, USA, 2014.Google Scholar
  15. [15]
    Yu, K. H.; Wang, P. X.; Lu, G. H.; Chen, K.-H.; Bo, Z.; Chen, J. H. Patterning vertically oriented graphene sheets for nanodevice applications. J. Phys. Chem. Lett. 2011, 2, 537–542.CrossRefGoogle Scholar
  16. [16]
    Mao, S.; Yu, K. H.; Chang, J. B.; Steeber, D. A.; Ocola, L. E.; Chen, J. H. Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci. Rep. 2013, 3, 1696.CrossRefGoogle Scholar
  17. [17]
    Ren, G. F.; Pan, X.; Bayne, S.; Fan, Z. Y. Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon 2014, 71, 94–101.CrossRefGoogle Scholar
  18. [18]
    Seo, D. H.; Han, Z. J.; Kumar, S.; Ostrikov, K. K. Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv. Energy Mater. 2013, 3, 1316–1323.CrossRefGoogle Scholar
  19. [19]
    Malesevic, A.; Kemps, R.; Vanhulsel, A.; Chowdhury, M. P.; Volodin, A.; Van Haesendonck, C. Field emission from vertically aligned few-layer graphene. J. Appl. Phys. 2008, 104, 084301.CrossRefGoogle Scholar
  20. [20]
    Wu, Y. H.; Yang, B. J.; Zong, B. Y.; Sun, H.; Shen, Z. X.; Feng, Y. P. Carbon nanowalls and related materials. J. Mater. Chem. 2004, 14, 469–477.CrossRefGoogle Scholar
  21. [21]
    Yu, J.; Qin, L.; Hao, Y. F.; Kuang, S. Y.; Bai, X. D.; Chong, Y.-M.; Zhang, W. J.; Wang, E. G. Vertically aligned boron nitride nanosheets: Chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano 2010, 4, 414–22.CrossRefGoogle Scholar
  22. [22]
    Zhang, C.; Hao, X. P.; Wu, Y. Z.; Du, M. Synthesis of vertically aligned boron nitride nanosheets using CVD method. Mater. Res. Bull. 2012, 47, 2277–2281.CrossRefGoogle Scholar
  23. [23]
    Pakdel, A.; Zhi, C. Y.; Bando, Y.; Nakayama, T.; Golberg, D. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano 2011, 5, 6507–6515.CrossRefGoogle Scholar
  24. [24]
    Kesler, V. G.; Kosinova, M. L.; Rumyantsev, Y. M.; Sulyaeva, V. S. X-ray photoelectron and auger spectroscopic study of the chemical composition of BCxNy films. J. Struct. Chem. 2012, 53, 699–707.CrossRefGoogle Scholar
  25. [25]
    Levy, R. A.; Mastromatteo, E.; Grow, J. M.; Paturi, V.; Kuo, W. P.; Boeglin, H. J.; Shalvoy, R. Low pressure chemical vapor deposition of B-N-C-H films from triethylamine borane complex. J. Mater. Res. 1995, 10, 320–327.CrossRefGoogle Scholar
  26. [26]
    Choy, K. L. Chemical vapour deposition of coatings. Prog. Mater. Sci. 2003, 48, 57–170.CrossRefGoogle Scholar
  27. [27]
    Meyyappan, M.; Delzeit, L.; Cassell, A.; Hash, D. Carbon nanotube growth by PECVD: A review. Plasma Sources Sci. Technol. 2003, 12, 205–216.CrossRefGoogle Scholar
  28. [28]
    Merenkov, I. S.; Kosinova, M. L.; Ermakova, E. N.; Maksimovskii, E. A.; Rumyantsev, Y. M. PECVD synthesis of hexagonal boron nitride nanowalls from a borazine + ammonia mixture. Inorg. Mater. 2015, 51, 1097–1103.CrossRefGoogle Scholar
  29. [29]
    Boo, J. H.; Rohr, C.; Ho, W. Growth of boron nitride thin films on silicon substrates using new organoboron precursors. Phys. Stat. Sol. (A) 1999, 176, 705–710.CrossRefGoogle Scholar
  30. [30]
    Ciofani, G.; Del Turco, S.; Rocca, A.; de Vito, G.; Cappello, V.; Yamaguchi, M.; Li, X.; Mazzolai, B.; Basta, G.; Gemmi, M. et al. Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. Nanomedicine 2014, 9, 773–788.CrossRefGoogle Scholar
  31. [31]
    Merenkov, I. S.; Kasatkin, I. A.; Maksimovskii, E. A.; Alferova, N. I.; Kosinova, M. L. Vertically aligned layers of hexagonal boron nitride: PECVD synthesis from triethylaminoborane and structural features. J. Struct. Chem. 2017, 58, 1018–1024.CrossRefGoogle Scholar
  32. [32]
    Sato, Y.; Terauchi, M.; Mukai, M.; Kaneyama, T.; Adachi, K. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region. Ultramicroscopy 2011, 111, 1381–1387.CrossRefGoogle Scholar
  33. [33]
    BenMoussa, B.; D’Haen, J.; Borschel, C.; Barjon, J.; Soltani, A.; Mortet, V.; Ronning, C.; D’Olieslaeger, M.; Boyen, H.-G.; Haenen, K. Hexagonal boron nitride nanowalls: Physical vapour deposition, 2D/3D morphology and spectroscopic analysis. J. Phys. D: Appl. Phys. 2012, 45, 135302.CrossRefGoogle Scholar
  34. [34]
    Yang, C. Y.; Bi, H.; Wan, D. Y.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. J. Mater. Chem. A 2013, 1, 770–775.CrossRefGoogle Scholar
  35. [35]
    Hiramatsu, M.; Hori, M. Fabrication of carbon nanowalls using novel plasma processing. Jpn. J. Appl. Phys. 2006, 45, 5522–5527.CrossRefGoogle Scholar
  36. [36]
    Xu, S.; Ma, X.; Su, M. Investigation of BCN films deposited at various hboxN2/hboxAr flow ratios by DC reactive magnetron sputtering. IEEE Trans. Plasma Sci. 2006, 34, 1199–1203.CrossRefGoogle Scholar
  37. [37]
    Jeon, J.-K.; Uchimaru, Y.; Kim, D.-P. Synthesis of novel amorphous boron carbonitride ceramics from the borazine derivative copolymer via hydroboration. Inorg. Chem. 2004, 43, 4796–4798.CrossRefGoogle Scholar
  38. [38]
    Gouin, X.; Grange, P.; Bois, L.; L’Haridon, P.; Laurent, Y. Characterization of the nitridation process of boric acid. J. Alloys Compd. 1995, 224, 22–28.CrossRefGoogle Scholar
  39. [39]
    Il’inchik, E. A.; Merenkov, I. S. X-ray photoelectron study of the effect of the composition of the initial gas phase on changes in the electronic structure of hexagonal boron nitride films obtained by PECVD from borazine. J. Struct. Chem. 2016, 57, 670–678.CrossRefGoogle Scholar
  40. [40]
    Liu, L. H.; Wang, Y. X.; Feng, K. C.; Li, Y. G.; Li, W. Q.; Zhao, C. H.; Zhao, Y. N. Preparation of boron carbon nitride thin films by radio frequency magnetron sputtering. Appl. Surf. Sci. 2006, 252, 4185–4189.CrossRefGoogle Scholar
  41. [41]
    Dinescu, M.; Perrone, A.; Caricato, A. P.; Mirenghi, L.; Gerardi, C.; Ghica, C.; Frunza, L. Boron carbon nitride films deposited by sequential pulses laser deposition. Appl. Surf. Sci. 1998, 127–129, 692–696.CrossRefGoogle Scholar
  42. [42]
    Wada, Y.; Yap, Y. K.; Yoshimura, M.; Mori, Y.; Sasaki, T. The control of B–N and B–C bonds in BCN films synthesized using pulsed laser deposition. Diam. Relat. Mater. 2000, 9, 620–624.CrossRefGoogle Scholar
  43. [43]
    Zhou, F.; Adachi, K.; Kato, K. Friction and wear behavior of BCN coatings sliding against ceramic and steel balls in various environments. Wear 2006, 261, 301–310.CrossRefGoogle Scholar
  44. [44]
    Lei, Y.-G.; Ng, K.-M.; Weng, L.-T.; Chan, C.-M.; Li, L. XPS C 1s binding energies for fluorocarbon-hydrocarbon microblock copolymers. Surf. Interface Anal. 2003, 35, 852–855.CrossRefGoogle Scholar
  45. [45]
    Guimon, C.; Gonbeau, D.; Pfister-Guillouzo, G.; Dugne, O.; Guette, A.; Naslain, R.; Lahaye, M. XPS study of BN thin films deposited by CVD on SiC plane substrates. Surf. Interface Anal. 1990, 16, 440–445.CrossRefGoogle Scholar
  46. [46]
    Linss, V.; Rodil, S. E.; Reinke, P.; Garnier, M. G.; Oelhafen, P.; Kreissig, U.; Richter, F. Bonding characteristics of DC magnetron sputtered B–C–N thin films investigated by Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy. Thin Solid Films 2004, 467, 76–87.CrossRefGoogle Scholar
  47. [47]
    Künzli, H.; Gantenbein, P.; Steiner, R.; Oelhafen, P. Deposition and characterization of thin boron-carbide coatings. Fresenius J. Anal. Chem. 1993, 346, 41–44.CrossRefGoogle Scholar
  48. [48]
    Huang, J. Y.; Yasuda, H.; Mori, H. HRTEM and EELS studies on the amorphization of hexagonal boron nitride induced by ball milling. J. Am. Ceram. Soc. 2000, 83, 403–409.CrossRefGoogle Scholar
  49. [49]
    Jiménez, I.; Jankowski, A.; Terminello, L. J.; Carlisle, J. A.; Sutherland, D. G. J.; Doll, G. L.; Mantese, J. V.; Tong, W. M.; Shuh, D. K.; Himpsel, F. J. Near-edge X-ray absorption fine structure study of bonding modifications in BN thin films by ion implantation. Appl. Phys. Lett. 1996, 68, 2816–2818.CrossRefGoogle Scholar
  50. [50]
    Ray, S. C.; Tsai, H. M.; Chiou, J. W.; Jan, J. C.; Kumar, K.; Pong, W. F.; Chien, F. Z.; Tsai, M.-H.; Chattopadhyay, S.; Chen, L. C. et al. X-ray absorption studies of boron–carbon–nitrogen (BxCyNz) ternary alloys. Diam. Relat. Mater. 2004, 13, 1553–1557.CrossRefGoogle Scholar
  51. [51]
    Caretti, I.; Jiménez, I. Point defects in hexagonal BN, BC3 and BCxN compounds studied by X-ray absorption near-edge structure. J. Appl. Phys. 2011, 110, 023511.CrossRefGoogle Scholar
  52. [52]
    Franke, R.; Bender, S.; Jüngermann, H.; Kroschel, M.; Jansen, M. The determination of structural units in amorphous Si–B–N–C ceramics by means of Si, B, N and C K—XANES spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1999, 101–103, 641–645.CrossRefGoogle Scholar
  53. [53]
    Stöhr, J. NEXAFS Spectroscopy; Springer: Berlin, Heidelberg, Germany, 1992.CrossRefGoogle Scholar
  54. [54]
    Ray, S. C.; Tsai, H. M.; Bao, C. W.; Chiou, J. W.; Jan, J. C.; Kumar, K. P. K.; Pong, W. F.; Tsai, M.-H.; Chattopadhyay, S.; Chen, L. C. et al. Electronic and bonding structures of B-C-N thin films investigated by X-ray absorption and photoemission spectroscopy. J. Appl. Phys. 2004, 96, 208–211.CrossRefGoogle Scholar
  55. [55]
    Ripalda, J. M.; Román, E.; Díaz, N.; Galán, L.; Montero, I.; Comelli, G.; Baraldi, A.; Lizzit, S.; Goldoni, A.; Paolucci, G. Correlation of X-ray absorption and X-ray photoemission spectroscopies in amorphous carbon nitride. Phys. Rev. B 1999, 60, R3705–R3708.CrossRefGoogle Scholar
  56. [56]
    Bhattacharyya, S.; Lübbe, M.; Richter, F. Near edge X-ray absorption fine structure of thermally annealed amorphous nitrogenated carbon films. J. Appl. Phys. 2000, 88, 5043–5049.CrossRefGoogle Scholar
  57. [57]
    Pease, R. S. An X-ray study of boron nitride. Acta Cryst. 1952, 5, 356–361.CrossRefGoogle Scholar
  58. [58]
    Powder Diffraction Files (PDF) № 34–421. Powder Diffr. Files № 34–421.Google Scholar
  59. [59]
    Hoang, D.-Q.; Pobedinskas, P.; Nicley, S. S.; Turner, S.; Janssens, S. D.; Van Bael, M. K.; D’Haen, J.; Haenen, K. Elucidation of the growth mechanism of sputtered 2D hexagonal boron nitride nanowalls. Cryst. Growth Des. 2016, 16, 3699–3708.CrossRefGoogle Scholar
  60. [60]
    Merenkov, I. S.; Kasatkin, I. A.; Kosinova, M. L. X-ray diffraction study of vertically aligned layers of h-BN, obtained by PECVD from borazine and ammonia or helium mixtures. J. Struct. Chem. 2015, 56, 1173–1175.CrossRefGoogle Scholar
  61. [61]
    Merenkov, I. S.; Kosinova, M. L.; Maximovskii, E. A. Boron nitride nanowalls: Low-temperature plasma-enhanced chemical vapor deposition synthesis and optical properties. Nanotechnology 2017, 28, 185602.CrossRefGoogle Scholar
  62. [62]
    Bo, Z.; Mao, S.; Jun Han, Z.; Cen, K. F.; Chen, J. H.; Ostrikov, K. Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 2015, 44, 2108–2121.CrossRefGoogle Scholar
  63. [63]
    Mironovich, K. V.; Itkis, D. M.; Semenenko, D. A.; Dagesian, S. A.; Yashina, L. V.; Kataev, E. Y.; Mankelevich, Y. A.; Suetin, N. V.; Krivchenko, V. A. Tailoring of the carbon nanowall microstructure by sharp variation of plasma radical composition. Phys. Chem. Chem. Phys. 2014, 16, 25621–25627.CrossRefGoogle Scholar
  64. [64]
    Zhao, J.; Shaygan, M.; Eckert, J.; Meyyappan, M.; Rümmeli, M. H. A growth mechanism for free-standing vertical graphene. Nano Lett. 2014, 14, 3064–3071.CrossRefGoogle Scholar
  65. [65]
    Cai, M. Z.; Outlaw, R. A.; Quinlan, R. A.; Premathilake, D.; Butler, S. M.; Miller, J. R. Fast response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C2H2. ACS Nano 2014, 8, 5873–5882.CrossRefGoogle Scholar
  66. [66]
    Sankaran, K. J.; Hoang, D. Q.; Kunuku, S.; Korneychuk, S.; Turner, S.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M. K.; D’Haen, J.; Verbeeck, J. et al. Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures. Sci. Rep. 2016, 6, 29444.CrossRefGoogle Scholar
  67. [67]
    Merenkov, I. S.; Burovihina, A. A.; Zhukov, Y. M.; Kasatkin, I. A.; Medvedev, O. S.; Zvereva, I. A.; Kosinova, M. L. Thermal stability of UV light emitting boron nitride nanowalls. Mater. Des. 2017, 117, 239–247.CrossRefGoogle Scholar
  68. [68]
    Zhu, Y.-C.; Bando, Y.; Xue, D.-F.; Sekiguchi, T.; Golberg, D.; Xu, F.-F.; Liu, Q.-L. New boron nitride whiskers: Showing strong ultraviolet and visible light luminescence. J. Phys. Chem. B. 2004, 108, 6193–6196.CrossRefGoogle Scholar
  69. [69]
    Han, W. Q.; Yu, H. G.; Zhi, C. Y.; Wang, J. B.; Liu, Z. X.; Sekiguchi, T.; Bando, Y. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. Nano Lett. 2008, 8, 491–494.CrossRefGoogle Scholar
  70. [70]
    Zhang, H. Z.; Phillips, M. R.; Fitz Gerald, J. D.; Yu, J.; Chen, Y. Patterned growth and cathodoluminescence of conical boron nitride nanorods. Appl. Phys. Lett. 2006, 88, 093117.CrossRefGoogle Scholar
  71. [71]
    Genchi, G. G.; Ciofani, G. Bioapplications of boron nitride nanotubes. Nanomedicine 2015, 10, 3315–3319.CrossRefGoogle Scholar
  72. [72]
    Rasel, M. A. I.; Li, T.; Nguyen, T. D.; Singh, S.; Zhou, Y. H.; Xiao, Y.; Gu, Y. T. Biophysical response of living cells to boron nitride nanoparticles: Uptake mechanism and bio-mechanical characterization. J. Nanopart. Res. 2015, 17, 441.CrossRefGoogle Scholar
  73. [73]
    Soares, D. C. F.; Ferreira, T. H.; de Aguiar Ferreira, C.; Cardoso, V. N.; de Sousa, E. M. B. Boron nitride nanotubes radiolabeled with 99mTc: Preparation, physicochemical characterization, biodistribution study, and scintigraphic imaging in Swiss mice. Int. J. Pharm. 2012, 423, 489–495.CrossRefGoogle Scholar
  74. [74]
    Ion, R.; Vizireanu, S.; Luculescu, C.; Cimpean, A.; Dinescu, G. Vertically, interconnected carbon nanowalls as biocompatible scaffolds for osteoblast cells. J. Phys. D: Appl. Phys. 2016, 49, 274004.CrossRefGoogle Scholar
  75. [75]
    Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ivan Sergeevich Merenkov
    • 1
    • 2
    Email author
  • Mikhail Sergeevich Myshenkov
    • 3
  • Yuri Mikhailovich Zhukov
    • 3
  • Yohei Sato
    • 4
  • Tatyana Sergeevna Frolova
    • 5
    • 6
    • 7
  • Denis Vasilevich Danilov
    • 3
  • Igor Alekseevich Kasatkin
    • 3
  • Oleg Sergeevich Medvedev
    • 3
  • Roman Vladimirovich Pushkarev
    • 1
  • Olga Ivanovna Sinitsyna
    • 5
    • 7
  • Masami Terauchi
    • 4
  • Irina Alekseevna Zvereva
    • 3
  • Marina Leonidovna Kosinova
    • 1
  • Ken Ostrikov
    • 8
    • 9
  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia
  3. 3.Saint-Petersburg State UniversitySt. PetersburgRussia
  4. 4.IMRAMTohoku UniversitySendaiJapan
  5. 5.Institute of Cytology and Genetics SB RASNovosibirskRussia
  6. 6.Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RASNovosibirskRussia
  7. 7.Novosibirsk State UniversityNovosibirskRussia
  8. 8.School of Physics, Chemistry and Mechanical EngineeringQueensland University of TechnologyBrisbaneAustralia
  9. 9.CSIRO-QUT Joint Sustainable Processes and Devices LaboratoryLindfieldAustralia

Personalised recommendations