Skip to main content
Log in

Orientation-controlled, low-temperature plasma growth and applications of h-BN nanosheets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Dimensionality and orientation of hexagonal boron nitride (h-BN) nanosheets are promising to create and control their unique properties for diverse applications. However, low-temperature deposition of vertically oriented h-BN nanosheets is a significant challenge. Here we report on the low-temperature plasma synthesis of maze-like h-BN nanowalls (BNNWs) from a mixture of triethylamine borane (TEAB) and ammonia at temperatures as low as 400 °C. The maze-like BNNWs contained vertically aligned stacks of h-BN nanosheets. Wavy h-BN nanowalls with randomly oriented nanocrystalline structure are also fabricated. Simple and effective control of morphological type of BNNWs by the deposition temperature is demonstrated. Despite the lower synthesis temperature, thermal stability and oxidation resistivity of the maze-like BNNWs are higher than for the wavy nanowalls. The structure and oxidation of the nanowalls was found to be the critical factor for their thermal stability and controlled luminescence properties. Cytotoxic study demonstrated significant antibacterial effect of both maze-like and wavy h-BN nanowalls against E. coli. The reported results reveal a significant potential of h-BN nanowalls for a broad range of applications from electronics to biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959.

    Article  Google Scholar 

  3. Falin, A.; Cai, Q.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S. M.; Watanabe, K.; Taniguchi, T. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815.

    Article  Google Scholar 

  4. Li, L. H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 2014, 8, 1457–1462.

    Article  Google Scholar 

  5. Haubner, R.; Wilhelm, M.; Weissenbacher, R.; Lux, B. Boron nitrides— Properties, synthesis and applications. In High Performance Non-Oxide Ceramics. II. Structure and Bonding; Jansen, M., Ed.; Springer: Berlin, Heidelberg, Germany, 2002; pp 1–45.

    Google Scholar 

  6. Li, L. H.; Chen, Y.; Cheng, B.-M.; Lin, M.-Y.; Chou, S.-L.; Peng, Y.-C. Photoluminescence of boron nitride nanosheets exfoliated by ball milling. Appl. Phys. Lett. 2012, 100, 261108.

    Article  Google Scholar 

  7. Weng, Q. H.; Wang, X. B.; Wang, X.; Bando, Y.; Golberg, D. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989–4012.

    Article  Google Scholar 

  8. Mateti, S.; Wong, C. S.; Liu, Z.; Yang, W. R.; Li, Y. C.; Li, L. H.; Chen, Y. Biocompatibility of boron nitride nanosheets. Nano Res. 2018, 11, 334–342.

    Article  Google Scholar 

  9. Sun, M. M.; Dong, J. C.; Lv, Y.; Zhao, S. Q.; Meng, C. X.; Song, Y. J.; Wang, G. X.; Li, J. F.; Fu, Q.; Tian, Z. Q. et al. Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells. Nano Res. 2018, 11, 3490–3498.

    Article  Google Scholar 

  10. Sun, M. M.; Fu, Q.; Gao, L. J.; Zheng, Y. P.; Li, Y. Y.; Chen, M. S.; Bao, X. H. Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core–shell nanoreactors. Nano Res. 2017, 10, 1403–1412.

    Article  Google Scholar 

  11. Li, L.; Li, L. H.; Ramakrishnan, S.; Dai, X. J.; Nicholas, K.; Chen, Y.; Chen, Z. Q.; Liu, X. W. Controlling wettability of boron nitride nanotube films and improved cell proliferation. J. Phys. Chem. C 2012, 116, 18334–18339.

    Article  Google Scholar 

  12. Cai, Q. R.; Mateti, S.; Watanabe, K.; Taniguchi, T.; Huang, S. M.; Chen, Y.; Li, L. H. Boron nitride nanosheet-veiled gold nanoparticles for surfaceenhanced raman scattering. ACS Appl. Mater. Interfaces 2016, 8, 15630–15636.

    Article  Google Scholar 

  13. Cai, Q. R.; Mateti, S.; Yang, W. R.; Jones, R.; Watanabe, K.; Taniguchi, T.; Huang, S. M.; Chen, Y.; Li, L. H. Boron nitride nanosheets improve sensitivity and reusability of surface-enhanced Raman spectroscopy. Angew. Chem., Int. Ed. 2016, 55, 8405–8409.

    Article  Google Scholar 

  14. Wu, Y. H.; Shen, Z. X.; Yu, T. Two-Dimensional Carbon: Fundamental Properties, Synthesis, Characterization, and Applications; CRC Press: Boca Raton, FL, USA, 2014.

    Google Scholar 

  15. Yu, K. H.; Wang, P. X.; Lu, G. H.; Chen, K.-H.; Bo, Z.; Chen, J. H. Patterning vertically oriented graphene sheets for nanodevice applications. J. Phys. Chem. Lett. 2011, 2, 537–542.

    Article  Google Scholar 

  16. Mao, S.; Yu, K. H.; Chang, J. B.; Steeber, D. A.; Ocola, L. E.; Chen, J. H. Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci. Rep. 2013, 3, 1696.

    Article  Google Scholar 

  17. Ren, G. F.; Pan, X.; Bayne, S.; Fan, Z. Y. Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon 2014, 71, 94–101.

    Article  Google Scholar 

  18. Seo, D. H.; Han, Z. J.; Kumar, S.; Ostrikov, K. K. Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv. Energy Mater. 2013, 3, 1316–1323.

    Article  Google Scholar 

  19. Malesevic, A.; Kemps, R.; Vanhulsel, A.; Chowdhury, M. P.; Volodin, A.; Van Haesendonck, C. Field emission from vertically aligned few-layer graphene. J. Appl. Phys. 2008, 104, 084301.

    Article  Google Scholar 

  20. Wu, Y. H.; Yang, B. J.; Zong, B. Y.; Sun, H.; Shen, Z. X.; Feng, Y. P. Carbon nanowalls and related materials. J. Mater. Chem. 2004, 14, 469–477.

    Article  Google Scholar 

  21. Yu, J.; Qin, L.; Hao, Y. F.; Kuang, S. Y.; Bai, X. D.; Chong, Y.-M.; Zhang, W. J.; Wang, E. G. Vertically aligned boron nitride nanosheets: Chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano 2010, 4, 414–22.

    Article  Google Scholar 

  22. Zhang, C.; Hao, X. P.; Wu, Y. Z.; Du, M. Synthesis of vertically aligned boron nitride nanosheets using CVD method. Mater. Res. Bull. 2012, 47, 2277–2281.

    Article  Google Scholar 

  23. Pakdel, A.; Zhi, C. Y.; Bando, Y.; Nakayama, T.; Golberg, D. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano 2011, 5, 6507–6515.

    Article  Google Scholar 

  24. Kesler, V. G.; Kosinova, M. L.; Rumyantsev, Y. M.; Sulyaeva, V. S. X-ray photoelectron and auger spectroscopic study of the chemical composition of BCxNy films. J. Struct. Chem. 2012, 53, 699–707.

    Article  Google Scholar 

  25. Levy, R. A.; Mastromatteo, E.; Grow, J. M.; Paturi, V.; Kuo, W. P.; Boeglin, H. J.; Shalvoy, R. Low pressure chemical vapor deposition of B-N-C-H films from triethylamine borane complex. J. Mater. Res. 1995, 10, 320–327.

    Article  Google Scholar 

  26. Choy, K. L. Chemical vapour deposition of coatings. Prog. Mater. Sci. 2003, 48, 57–170.

    Article  Google Scholar 

  27. Meyyappan, M.; Delzeit, L.; Cassell, A.; Hash, D. Carbon nanotube growth by PECVD: A review. Plasma Sources Sci. Technol. 2003, 12, 205–216.

    Article  Google Scholar 

  28. Merenkov, I. S.; Kosinova, M. L.; Ermakova, E. N.; Maksimovskii, E. A.; Rumyantsev, Y. M. PECVD synthesis of hexagonal boron nitride nanowalls from a borazine + ammonia mixture. Inorg. Mater. 2015, 51, 1097–1103.

    Article  Google Scholar 

  29. Boo, J. H.; Rohr, C.; Ho, W. Growth of boron nitride thin films on silicon substrates using new organoboron precursors. Phys. Stat. Sol. (A) 1999, 176, 705–710.

    Article  Google Scholar 

  30. Ciofani, G.; Del Turco, S.; Rocca, A.; de Vito, G.; Cappello, V.; Yamaguchi, M.; Li, X.; Mazzolai, B.; Basta, G.; Gemmi, M. et al. Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. Nanomedicine 2014, 9, 773–788.

    Article  Google Scholar 

  31. Merenkov, I. S.; Kasatkin, I. A.; Maksimovskii, E. A.; Alferova, N. I.; Kosinova, M. L. Vertically aligned layers of hexagonal boron nitride: PECVD synthesis from triethylaminoborane and structural features. J. Struct. Chem. 2017, 58, 1018–1024.

    Article  Google Scholar 

  32. Sato, Y.; Terauchi, M.; Mukai, M.; Kaneyama, T.; Adachi, K. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region. Ultramicroscopy 2011, 111, 1381–1387.

    Article  Google Scholar 

  33. BenMoussa, B.; D’Haen, J.; Borschel, C.; Barjon, J.; Soltani, A.; Mortet, V.; Ronning, C.; D’Olieslaeger, M.; Boyen, H.-G.; Haenen, K. Hexagonal boron nitride nanowalls: Physical vapour deposition, 2D/3D morphology and spectroscopic analysis. J. Phys. D: Appl. Phys. 2012, 45, 135302.

    Article  Google Scholar 

  34. Yang, C. Y.; Bi, H.; Wan, D. Y.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. J. Mater. Chem. A 2013, 1, 770–775.

    Article  Google Scholar 

  35. Hiramatsu, M.; Hori, M. Fabrication of carbon nanowalls using novel plasma processing. Jpn. J. Appl. Phys. 2006, 45, 5522–5527.

    Article  Google Scholar 

  36. Xu, S.; Ma, X.; Su, M. Investigation of BCN films deposited at various hboxN2/hboxAr flow ratios by DC reactive magnetron sputtering. IEEE Trans. Plasma Sci. 2006, 34, 1199–1203.

    Article  Google Scholar 

  37. Jeon, J.-K.; Uchimaru, Y.; Kim, D.-P. Synthesis of novel amorphous boron carbonitride ceramics from the borazine derivative copolymer via hydroboration. Inorg. Chem. 2004, 43, 4796–4798.

    Article  Google Scholar 

  38. Gouin, X.; Grange, P.; Bois, L.; L’Haridon, P.; Laurent, Y. Characterization of the nitridation process of boric acid. J. Alloys Compd. 1995, 224, 22–28.

    Article  Google Scholar 

  39. Il’inchik, E. A.; Merenkov, I. S. X-ray photoelectron study of the effect of the composition of the initial gas phase on changes in the electronic structure of hexagonal boron nitride films obtained by PECVD from borazine. J. Struct. Chem. 2016, 57, 670–678.

    Article  Google Scholar 

  40. Liu, L. H.; Wang, Y. X.; Feng, K. C.; Li, Y. G.; Li, W. Q.; Zhao, C. H.; Zhao, Y. N. Preparation of boron carbon nitride thin films by radio frequency magnetron sputtering. Appl. Surf. Sci. 2006, 252, 4185–4189.

    Article  Google Scholar 

  41. Dinescu, M.; Perrone, A.; Caricato, A. P.; Mirenghi, L.; Gerardi, C.; Ghica, C.; Frunza, L. Boron carbon nitride films deposited by sequential pulses laser deposition. Appl. Surf. Sci. 1998, 127–129, 692–696.

    Article  Google Scholar 

  42. Wada, Y.; Yap, Y. K.; Yoshimura, M.; Mori, Y.; Sasaki, T. The control of B–N and B–C bonds in BCN films synthesized using pulsed laser deposition. Diam. Relat. Mater. 2000, 9, 620–624.

    Article  Google Scholar 

  43. Zhou, F.; Adachi, K.; Kato, K. Friction and wear behavior of BCN coatings sliding against ceramic and steel balls in various environments. Wear 2006, 261, 301–310.

    Article  Google Scholar 

  44. Lei, Y.-G.; Ng, K.-M.; Weng, L.-T.; Chan, C.-M.; Li, L. XPS C 1s binding energies for fluorocarbon-hydrocarbon microblock copolymers. Surf. Interface Anal. 2003, 35, 852–855.

    Article  Google Scholar 

  45. Guimon, C.; Gonbeau, D.; Pfister-Guillouzo, G.; Dugne, O.; Guette, A.; Naslain, R.; Lahaye, M. XPS study of BN thin films deposited by CVD on SiC plane substrates. Surf. Interface Anal. 1990, 16, 440–445.

    Article  Google Scholar 

  46. Linss, V.; Rodil, S. E.; Reinke, P.; Garnier, M. G.; Oelhafen, P.; Kreissig, U.; Richter, F. Bonding characteristics of DC magnetron sputtered B–C–N thin films investigated by Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy. Thin Solid Films 2004, 467, 76–87.

    Article  Google Scholar 

  47. Künzli, H.; Gantenbein, P.; Steiner, R.; Oelhafen, P. Deposition and characterization of thin boron-carbide coatings. Fresenius J. Anal. Chem. 1993, 346, 41–44.

    Article  Google Scholar 

  48. Huang, J. Y.; Yasuda, H.; Mori, H. HRTEM and EELS studies on the amorphization of hexagonal boron nitride induced by ball milling. J. Am. Ceram. Soc. 2000, 83, 403–409.

    Article  Google Scholar 

  49. Jiménez, I.; Jankowski, A.; Terminello, L. J.; Carlisle, J. A.; Sutherland, D. G. J.; Doll, G. L.; Mantese, J. V.; Tong, W. M.; Shuh, D. K.; Himpsel, F. J. Near-edge X-ray absorption fine structure study of bonding modifications in BN thin films by ion implantation. Appl. Phys. Lett. 1996, 68, 2816–2818.

    Article  Google Scholar 

  50. Ray, S. C.; Tsai, H. M.; Chiou, J. W.; Jan, J. C.; Kumar, K.; Pong, W. F.; Chien, F. Z.; Tsai, M.-H.; Chattopadhyay, S.; Chen, L. C. et al. X-ray absorption studies of boron–carbon–nitrogen (BxCyNz) ternary alloys. Diam. Relat. Mater. 2004, 13, 1553–1557.

    Article  Google Scholar 

  51. Caretti, I.; Jiménez, I. Point defects in hexagonal BN, BC3 and BCxN compounds studied by X-ray absorption near-edge structure. J. Appl. Phys. 2011, 110, 023511.

    Article  Google Scholar 

  52. Franke, R.; Bender, S.; Jüngermann, H.; Kroschel, M.; Jansen, M. The determination of structural units in amorphous Si–B–N–C ceramics by means of Si, B, N and C K—XANES spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1999, 101–103, 641–645.

    Article  Google Scholar 

  53. Stöhr, J. NEXAFS Spectroscopy; Springer: Berlin, Heidelberg, Germany, 1992.

    Book  Google Scholar 

  54. Ray, S. C.; Tsai, H. M.; Bao, C. W.; Chiou, J. W.; Jan, J. C.; Kumar, K. P. K.; Pong, W. F.; Tsai, M.-H.; Chattopadhyay, S.; Chen, L. C. et al. Electronic and bonding structures of B-C-N thin films investigated by X-ray absorption and photoemission spectroscopy. J. Appl. Phys. 2004, 96, 208–211.

    Article  Google Scholar 

  55. Ripalda, J. M.; Román, E.; Díaz, N.; Galán, L.; Montero, I.; Comelli, G.; Baraldi, A.; Lizzit, S.; Goldoni, A.; Paolucci, G. Correlation of X-ray absorption and X-ray photoemission spectroscopies in amorphous carbon nitride. Phys. Rev. B 1999, 60, R3705–R3708.

    Article  Google Scholar 

  56. Bhattacharyya, S.; Lübbe, M.; Richter, F. Near edge X-ray absorption fine structure of thermally annealed amorphous nitrogenated carbon films. J. Appl. Phys. 2000, 88, 5043–5049.

    Article  Google Scholar 

  57. Pease, R. S. An X-ray study of boron nitride. Acta Cryst. 1952, 5, 356–361.

    Article  Google Scholar 

  58. Powder Diffraction Files (PDF) № 34–421. Powder Diffr. Files № 34–421.

  59. Hoang, D.-Q.; Pobedinskas, P.; Nicley, S. S.; Turner, S.; Janssens, S. D.; Van Bael, M. K.; D’Haen, J.; Haenen, K. Elucidation of the growth mechanism of sputtered 2D hexagonal boron nitride nanowalls. Cryst. Growth Des. 2016, 16, 3699–3708.

    Article  Google Scholar 

  60. Merenkov, I. S.; Kasatkin, I. A.; Kosinova, M. L. X-ray diffraction study of vertically aligned layers of h-BN, obtained by PECVD from borazine and ammonia or helium mixtures. J. Struct. Chem. 2015, 56, 1173–1175.

    Article  Google Scholar 

  61. Merenkov, I. S.; Kosinova, M. L.; Maximovskii, E. A. Boron nitride nanowalls: Low-temperature plasma-enhanced chemical vapor deposition synthesis and optical properties. Nanotechnology 2017, 28, 185602.

    Article  Google Scholar 

  62. Bo, Z.; Mao, S.; Jun Han, Z.; Cen, K. F.; Chen, J. H.; Ostrikov, K. Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 2015, 44, 2108–2121.

    Article  Google Scholar 

  63. Mironovich, K. V.; Itkis, D. M.; Semenenko, D. A.; Dagesian, S. A.; Yashina, L. V.; Kataev, E. Y.; Mankelevich, Y. A.; Suetin, N. V.; Krivchenko, V. A. Tailoring of the carbon nanowall microstructure by sharp variation of plasma radical composition. Phys. Chem. Chem. Phys. 2014, 16, 25621–25627.

    Article  Google Scholar 

  64. Zhao, J.; Shaygan, M.; Eckert, J.; Meyyappan, M.; Rümmeli, M. H. A growth mechanism for free-standing vertical graphene. Nano Lett. 2014, 14, 3064–3071.

    Article  Google Scholar 

  65. Cai, M. Z.; Outlaw, R. A.; Quinlan, R. A.; Premathilake, D.; Butler, S. M.; Miller, J. R. Fast response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C2H2. ACS Nano 2014, 8, 5873–5882.

    Article  Google Scholar 

  66. Sankaran, K. J.; Hoang, D. Q.; Kunuku, S.; Korneychuk, S.; Turner, S.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M. K.; D’Haen, J.; Verbeeck, J. et al. Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures. Sci. Rep. 2016, 6, 29444.

    Article  Google Scholar 

  67. Merenkov, I. S.; Burovihina, A. A.; Zhukov, Y. M.; Kasatkin, I. A.; Medvedev, O. S.; Zvereva, I. A.; Kosinova, M. L. Thermal stability of UV light emitting boron nitride nanowalls. Mater. Des. 2017, 117, 239–247.

    Article  Google Scholar 

  68. Zhu, Y.-C.; Bando, Y.; Xue, D.-F.; Sekiguchi, T.; Golberg, D.; Xu, F.-F.; Liu, Q.-L. New boron nitride whiskers: Showing strong ultraviolet and visible light luminescence. J. Phys. Chem. B. 2004, 108, 6193–6196.

    Article  Google Scholar 

  69. Han, W. Q.; Yu, H. G.; Zhi, C. Y.; Wang, J. B.; Liu, Z. X.; Sekiguchi, T.; Bando, Y. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. Nano Lett. 2008, 8, 491–494.

    Article  Google Scholar 

  70. Zhang, H. Z.; Phillips, M. R.; Fitz Gerald, J. D.; Yu, J.; Chen, Y. Patterned growth and cathodoluminescence of conical boron nitride nanorods. Appl. Phys. Lett. 2006, 88, 093117.

    Article  Google Scholar 

  71. Genchi, G. G.; Ciofani, G. Bioapplications of boron nitride nanotubes. Nanomedicine 2015, 10, 3315–3319.

    Article  Google Scholar 

  72. Rasel, M. A. I.; Li, T.; Nguyen, T. D.; Singh, S.; Zhou, Y. H.; Xiao, Y.; Gu, Y. T. Biophysical response of living cells to boron nitride nanoparticles: Uptake mechanism and bio-mechanical characterization. J. Nanopart. Res. 2015, 17, 441.

    Article  Google Scholar 

  73. Soares, D. C. F.; Ferreira, T. H.; de Aguiar Ferreira, C.; Cardoso, V. N.; de Sousa, E. M. B. Boron nitride nanotubes radiolabeled with 99mTc: Preparation, physicochemical characterization, biodistribution study, and scintigraphic imaging in Swiss mice. Int. J. Pharm. 2012, 423, 489–495.

    Article  Google Scholar 

  74. Ion, R.; Vizireanu, S.; Luculescu, C.; Cimpean, A.; Dinescu, G. Vertically, interconnected carbon nanowalls as biocompatible scaffolds for osteoblast cells. J. Phys. D: Appl. Phys. 2016, 49, 274004.

    Article  Google Scholar 

  75. Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736.

    Article  Google Scholar 

Download references

Acknowledgements

The reported research was funded by Russian Foundation for Basic Research and the government of the Novosibirsk region of the Russian Federation (No. 18-43-543003). The project was partially performed in the resource centers of Scientific Park of Saint-Petersburg State University, in particular, Center for X-ray Diffraction Studies, Thermogravimetric and Calorimetric Research Center, Center for Physical Methods of Surface Investigation and Nanotechnology Interdisciplinary Center. K. O. thanks the Australian Research Council for partial support, UrFU for the access to scientific equipment of Laboratory “Nanocrystal” supported by Act 211 Government of the RF (No. 02.A03.21.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Sergeevich Merenkov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merenkov, I.S., Myshenkov, M.S., Zhukov, Y.M. et al. Orientation-controlled, low-temperature plasma growth and applications of h-BN nanosheets. Nano Res. 12, 91–99 (2019). https://doi.org/10.1007/s12274-018-2185-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2185-7

Keywords

Navigation