Skip to main content

Detecting van der Waals forces between a single polymer repeating unit and a solid surface in high vacuum

Abstract

Ubiquitous van der Waals (vdW) forces are very important for nanostructures. Although the vdW forces between two surfaces (or two layers) have been measured for several decades, a direct detection at the single-molecule level is still difficult. Herein, we report a novel method to solve this problem in high vacuum by means of AFM-based single-molecule force spectroscopy (SMFS). Solvent molecules and surface adsorbed water are removed thoroughly under high vacuum so that the situation is greatly simplified. A constant force plateau can be observed when a polymer chain is peeled off from a substrate in high vacuum. Accordingly, the vdW forces between one polymer repeating unit and the substrates can be obtained. The experimental results show that the vdW forces (typical range: 21–54 pN) are dependent on the species of substrates and the size of polymer repeating unit, which is in good accordance with the theoretical results. It is expected that this novel method can be applied to detect other non-covalent interactions (such as hydrogen bond and π-π stacking) at the single-molecule level in the future.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    van Oss, C. J.; Chaudhury, M. K.; Good, R. J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 1988, 88, 927–941.

    Article  Google Scholar 

  2. [2]

    Hermann, J.; DiStasio, R. A. Jr.; Tkatchenko, A. First-principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications. Chem. Rev. 2017, 117, 4714–4758.

    Article  Google Scholar 

  3. [3]

    Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Ky Hirschberg, J. H. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 1997, 278, 1601–1604.

    Article  Google Scholar 

  4. [4]

    Li, I. T. S.; Walker, G. C. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions. J. Am. Chem. Soc. 2010, 132, 6530–6540.

    Article  Google Scholar 

  5. [5]

    Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319.

    Article  Google Scholar 

  6. [6]

    Yang, L. L.; Tan, X. X.; Wang, Z. Q.; Zhang, X. Supramolecular polymers: Historical development, preparation, characterization, and functions. Chem. Rev. 2015, 115, 7196–7239.

    Article  Google Scholar 

  7. [7]

    Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K. et al. Recent advances in the surface forces apparatus (SFA) technique. Rep. Prog. Phys. 2010, 73, 036601.

    Article  Google Scholar 

  8. [8]

    Israelachvili, J. N.; Tabor, D. Measurement of van der Waals dispersion forces in the range 1.4 to 130 nm. Nat. Phys. Sci. 1972, 236, 106.

    Article  Google Scholar 

  9. [9]

    Pashley, R. M.; McGuiggan, P. M.; Ninham, B. W.; Evans, D. F. Attractive forces between uncharged hydrophobic surfaces: Direct measurements in aqueous solution. Science 1985, 229, 1088–1089.

    Article  Google Scholar 

  10. [10]

    Burnham, N. A.; Dominguez, D. D.; Mowery, R. L.; Colton, R. J. Probing the surface forces of monolayer films with an atomic-force microscope. Phys. Rev. Lett. 1990, 64, 1931–1934.

    Article  Google Scholar 

  11. [11]

    Butt, H. J. Measuring electrostatic, van der Waals, and hydration forces in electrolyte-solutions with an atomic force microscope. Biophys. J. 1991, 60, 1438–1444.

    Article  Google Scholar 

  12. [12]

    Weisenhorn, A. L.; Maivald, P.; Butt, H. J.; Hansma, P. K. Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B 1992, 45, 11226–11232.

    Article  Google Scholar 

  13. [13]

    Ptak, A.; Gojzewski, H.; Kappl, M.; Butt, H. J. Influence of humidity on the nanoadhesion between a hydrophobic and a hydrophilic surface. Chem. Phys. Lett. 2011, 503, 66–70.

    Article  Google Scholar 

  14. [14]

    Kawai, S.; Foster, A. S.; Björkman, T.; Nowakowska, S.; Bjork, J.; Canova, F. F.; Gade, L. H.; Jung, T. A.; Meyer, E. Van der Waals interactions and the limits of isolated atom models at interfaces. Nat. Commun. 2016, 7, 11559.

    Article  Google Scholar 

  15. [15]

    Wagner, C.; Fournier, N.; Ruiz, V. G.; Li, C.; Müellen, K.; Rohlfing, M.; Tkatchenko, A.; Temirov, R.; Tautz, F. S. Non-additivity of moleculesurface van der Waals potentials from force measurements. Nat. Commun. 2014, 5, 5568.

    Article  Google Scholar 

  16. [16]

    Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 1997, 275, 1295–1297.

    Article  Google Scholar 

  17. [17]

    Li, H. B.; Linke, W. A.; Oberhauser, A. F.; Carrion-Vazquez, M.; Kerkviliet, J. G.; Lu, H.; Marszalek, P. E.; Fernandez, J. M. Reverse engineering of the giant muscle protein titin. Nature 2002, 418, 998–1002.

    Article  Google Scholar 

  18. [18]

    Hinterdorfer, P.; Dufrêne, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 2006, 3, 347–355.

    Article  Google Scholar 

  19. [19]

    Oesterhelt, F.; Rief, M.; Gaub, H. E. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water. New J. Phys. 1999, 1, 6.

    Article  Google Scholar 

  20. [20]

    Zou, S.; Schönherr, H.; Vancso, G. J. Stretching and rupturing individual supramolecular polymer chains by afm. Angew. Chem., Int. Ed. 2005, 44, 956–959.

    Article  Google Scholar 

  21. [21]

    Balzer, B. N.; Gallei, M.; Hauf, M. V.; Stallhofer, M.; Wiegleb, L.; Holleitner, A.; Rehahn, M.; Hugel, T. Nanoscale friction mechanisms at solid-liquid interfaces. Angew. Chem., Int. Ed. 2013, 52, 6541–6544.

    Article  Google Scholar 

  22. [22]

    Cheng, B.; Cui, S. Supramolecular chemistry and mechanochemistry of macromolecules: Recent advances by single-molecule force spectroscopy. Top. Curr. Chem. 2015, 369, 97–134.

    Article  Google Scholar 

  23. [23]

    He, C. Z.; Lamour, G.; Xiao, A.; Gsponer, J.; Li, H. B. Mechanically tightening a protein slipknot into a trefoil knot. J. Am. Chem. Soc. 2014, 136, 11946–11955.

    Article  Google Scholar 

  24. [24]

    Roland, J. T.; Guan, Z. B. Synthesis and single-molecule studies of a welldefined biomimetic modular multidomain polymer using a peptidomimetic ß-sheet module. J. Am. Chem. Soc. 2004, 126, 14328–14329.

    Article  Google Scholar 

  25. [25]

    Wu, D.; Lenhardt, J. M.; Black, A. L.; Akhremitchev, B. B.; Craig, S. L. Molecular stress relief through a force-induced irreversible extension in polymer contour length. J. Am. Chem. Soc. 2010, 132, 15936–15938.

    Article  Google Scholar 

  26. [26]

    Zhang, Q. M.; Lu, Z. Y.; Hu, H.; Yang, W. T.; Marszalek, P. E. Direct detection of the formation of V-amylose helix by single molecule force spectroscopy. J. Am. Chem. Soc. 2006, 128, 9387–9393.

    Article  Google Scholar 

  27. [27]

    Kang, X.; Cai, W.; Gu, H.; Liu, S.; Cui, S. A Facile and environmentfriendly method for fabrication of polymer brush. Chin. J. Polym. Sci. 2017, 35, 857–865.

    Article  Google Scholar 

  28. [28]

    Qian, L.; Bao, Y.; Duan, W.; Cui, S. Effects of water content of the mixed solvent on the single-molecule mechanics of amylose. ACS Macro Lett. 2018, 7, 672–676.

    Article  Google Scholar 

  29. [29]

    Li, Q.; Zhang, T.; Pan, Y. G.; Ciacchi, L. C.; Xu, B. Q.; Wei, G. AFMbased force spectroscopy for bioimaging and biosensing. RSC Adv. 2016, 6, 12893–12912.

    Article  Google Scholar 

  30. [30]

    Ganji, M.; Kim, S. H.; van der Torre, J.; Abbondanzieri, E.; Dekker, C. Intercalation-based single-molecule fluorescence assay to study DNA supercoil dynamics. Nano Lett. 2016, 16, 4699–4707.

    Article  Google Scholar 

  31. [31]

    Bull, M. S.; Sullan, R. M. A.; Li, H. B.; Perkins, T. T. Improved single molecule force spectroscopy using micromachined cantilevers. ACS Nano 2014, 8, 4984–4995.

    Article  Google Scholar 

  32. [32]

    Huang, W. M.; Zhu, Z. S.; Wen, J.; Wang, X.; Qin, M.; Cao, Y.; Ma, H. B.; Wang, W. Single molecule study of force-induced rotation of carboncarbon double bonds in polymers. ACS Nano 2017, 11, 194–203.

    Article  Google Scholar 

  33. [33]

    Wu, X.; Huang, W. M.; Wu, W. H.; Xue, B.; Xiang, D. F.; Li, Y.; Qin, M.; Sun, F.; Wang, W.; Zhang, W. B. et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 2018. DOI: 10.1007/s12274-017-1890-y.

    Google Scholar 

  34. [34]

    Hollabaugh, C. M.; Chessick, J. J. Adsorption of water and polar paraffinic compounds onto rutile. J. Phys. Chem. 1961, 65, 109–114.

    Article  Google Scholar 

  35. [35]

    Xue, W.; Huglin, M. B.; Jones, T. G. J. Parameters affecting the lower critical solution temperature of linear and crosslinked poly (N-ethylacrylamide) in aqueous media. Macromol. Chem. Phys. 2003, 204, 1956–1965.

    Article  Google Scholar 

  36. [36]

    Xiao, X. D.; Qian, L. M. Investigation of humidity-dependent capillary force. Langmuir 2000, 16, 8153–8158.

    Article  Google Scholar 

  37. [37]

    Xue, Y. R.; Li, X.; Li, H. B.; Zhang, W. K. Quantifying thiol–gold interactions towards the efficient strength control. Nat. Commun. 2014, 5, 4348.

    Article  Google Scholar 

  38. [38]

    Tan, X. X.; Yu, Y.; Liu, K.; Xu, H. P.; Liu, D. S.; Wang, Z. Q.; Zhang, X. Single-molecule force spectroscopy of selenium-containing amphiphilic block copolymer: Toward disassembling the polymer micelles. Langmuir 2012, 28, 9601–9605.

    Article  Google Scholar 

  39. [39]

    Sandal, M.; Valle, F.; Tessari, I.; Mammi, S.; Bergantino, E.; Musiani, F.; Brucale, M.; Bubacco, L.; Samori, B. Conformational equilibria in monomeric a-synuclein at the single-molecule level. PLoS Biol. 2008, 6, e6.

    Article  Google Scholar 

  40. [40]

    Cui, S. X.; Liu, C. J.; Zhang, X. Simple method to isolate single polymer chains for the direct measurement of the desorption force. Nano Lett. 2003, 3, 245–248.

    Article  Google Scholar 

  41. [41]

    Liu, K.; Song, Y.; Feng, W.; Liu, N. N.; Zhang, W. K.; Zhang, X. Extracting a single polyethylene oxide chain from a single crystal by a combination of atomic force microscopy imaging and single-molecule force spectroscopy: Toward the investigation of molecular interactions in their condensed states. J. Am. Chem. Soc. 2011, 133, 3226–3229.

    Article  Google Scholar 

  42. [42]

    Li, J.; Bai, C.; Wang, C.; Zhu, C.; Lin, Z.; Li, Q.; Cao, E. A convenient method of aligning large DNA molecules on bare mica surfaces for atomic force microscopy. Nucleic Acids Res. 1998, 26, 4785–4786.

    Article  Google Scholar 

  43. [43]

    Ma, C. D.; Wang, C. X.; Acevedo-Vélez, C.; Gellman, S. H.; Abbott, N. L. Modulation of hydrophobic interactions by proximally immobilized ions. Nature 2015, 517, 347–350.

    Article  Google Scholar 

  44. [44]

    Böhringer, M.; Morgenstern, K.; Schneider, W. D.; Berndt, R.; Mauri, F.; De Vita, A.; Car, R. Two-dimensional self-assembly of supramolecular clusters and chains. Phys. Rev. Lett. 1999, 83, 324–327.

    Article  Google Scholar 

  45. [45]

    Cui, S. X.; Albrecht, C.; Kühner, F.; Gaub, H. E. Weakly bound water molecules shorten single-stranded DNA. J. Am. Chem. Soc. 2006, 128, 6636–6639.

    Article  Google Scholar 

  46. [46]

    Walder, R.; van Patten, W. J.; Adhikari, A.; Perkins, T. T. Going vertical to improve the accuracy of atomic force microscopy based single-molecule force spectroscopy. ACS Nano 2018, 12, 198–207.

    Article  Google Scholar 

  47. [47]

    Evans, E.; Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 1997, 72, 1541–1555.

    Article  Google Scholar 

  48. [48]

    Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. Estimates of the ab initio limit for p-p interactions: The benzene dimer. J. Am. Chem. Soc. 2002, 124, 10887–10893.

    Article  Google Scholar 

  49. [49]

    Grabowski, S. J. Hydrogen bonding strength—measures based on geometric and topological parameters. J. Phys. Org. Chem. 2004, 17, 18–31.

    Article  Google Scholar 

  50. [50]

    Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

    Article  Google Scholar 

  51. [51]

    Anwar, J.; Frenkel, D.; Noro, M. G. Calculation of the melting point of nacl by molecular simulation. J. Chem. Phys. 2003, 118, 728–735.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21574106 and 21774102). We thank Prof. Dr. Lifeng Chi for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuxun Cui.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Xiao, C., Qian, L. et al. Detecting van der Waals forces between a single polymer repeating unit and a solid surface in high vacuum. Nano Res. 12, 57–61 (2019). https://doi.org/10.1007/s12274-018-2176-8

Download citation

Keywords

  • van der Waals forces
  • high vacuum
  • atomic force microscopy
  • single-molecule studies
  • polymer desorption