Skip to main content

Advertisement

Log in

Self-assembly of Human Galectin-1 via dual supramolecular interactions and its inhibition of T-cell agglutination and apoptosis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, we proposed a new strategy to construct artificial plant protein assemblies, which were induced by adding a small molecule, based on dual supramolecular interactions. In this paper, we further explored this method by employing Human Galectin-1 (Gal-1) as a building block to form self-assembled microribbons. Two non-covalent interactions, including lactose–lectin binding and dimerization of Rhodamine B (RhB), induced by the small molecule ligand addition, were involved in the crosslinking of the animal protein, resulting in the formation of assemblies. By using transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and three-dimensional (3D) tomographic analysis, we arrived at a possible mechanistic model for the microribbon formation. Furthermore, the morphology of protein assemblies could be fine-tuned by varying the incubation time, the protein/ligand ratio, and the chemical structures of ligands. Interestingly, the formation of protein microribbons successfully inhibited Gal-1 induced T-cell agglutination and apoptosis. This is because the multivalent and dynamic interactions in protein assemblies compete with the binding between Gal-1 and the glycans on cell surfaces, which suppresses the function of Gal-1 in promotion of tumor progression and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fotin, A.; Cheng, Y. F.; Sliz, P.; Grigorieff, N.; Harrison, S. C.; Kirchhausen, T.; Walz, T. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 2004, 432, 573–579.

    Article  Google Scholar 

  2. Pollard, T. D.; Cooper, J. A. Actin, a central player in cell shape and movement. Science 2009, 326, 1208–1212.

    Article  Google Scholar 

  3. Sára, M.; Sleytr, U. B. S-Layer proteins. J. Bacteriol. 2000, 182, 859–868.

    Article  Google Scholar 

  4. Garcia-Seisdedos, H.; Empereur-Mot, C.; Elad, N.; Levy, E. D. Proteins evolve on the edge of supramolecular selfassembly. Nature 2017, 548, 244–247.

    Google Scholar 

  5. Luo, Q.; Hou, C. X.; Bai, Y. S.; Wang, R. B.; Liu, J. Q. Protein assembly: Versatile approaches to construct highly ordered nanostructures. Chem. Rev. 2016, 116, 13571–13632.

    Article  Google Scholar 

  6. Bai, Y. S.; Luo, Q.; Liu, J. Q. Protein self-assembly via supramolecular strategies. Chem. Soc. Rev. 2016, 45, 2756–2767.

    Article  Google Scholar 

  7. Sinclair, J. C. Self-assembly: Proteins on parade. Nat. Chem. 2012, 4, 346–347.

    Article  Google Scholar 

  8. Brodin, J. D.; Smith, S. J.; Carr, J. R.; Tezcan, F. A. Designed, helical protein nanotubes with variable diameters from a single building block. J. Am. Chem. Soc. 2015, 137, 10468–10471.

    Article  Google Scholar 

  9. Hou, C. X.; Li, J. X.; Zhao, L. L.; Zhang, W.; Luo, Q.; Dong, Z. Y.; Xu, J. Y.; Liu, J. Q. Construction of protein nanowires through cucurbit[8]uril-based highly specific host-guest interactions: An approach to the assembly of functional proteins. Angew. Chem., Int. Ed. 2013, 52, 5590–5593.

    Article  Google Scholar 

  10. Nguyen, H. D.; Dang, D. T.; van Dongen, J. L. J.; Brunsveld, L. Protein dimerization induced by supramolecular interactions with cucurbit[8]uril. Angew. Chem., Int. Ed. 2010, 49, 895–898.

    Article  Google Scholar 

  11. Oohora, K.; Burazerovic, S.; Onoda, A.; Wilson, Y. M.; Ward, T. R.; Hayashi, T. Chemically programmed supramolecular assembly of hemoprotein and streptavidin with alternating alignment. Angew. Chem., Int. Ed. 2012, 51, 3818–3821.

    Article  Google Scholar 

  12. Matsunaga, R.; Yanaka, S.; Nagatoishi, S.; Tsumoto, K. Hyperthin nanochains composed of self-polymerizing protein shackles. Nat. Commun. 2013, 4, 2211.

    Article  Google Scholar 

  13. Zhang, W.; Luo, Q.; Miao, L.; Hou, C. X.; Bai, Y. S.; Dong, Z. Y.; Xu, J. Y.; Liu, J. Q. Self-assembly of glutathione S-transferase into nanowires. Nanoscale 2012, 4, 5847–5851.

    Article  Google Scholar 

  14. Staples, J. K.; Oshaben, K. M.; Horne, W. S. A modular synthetic platform for the construction of protein-based supramolecular polymers via coiled-coil self-assembly. Chem. Sci. 2012, 3, 3387–3392.

    Article  Google Scholar 

  15. Sakai, F.; Yang, G.; Weiss, M. S.; Liu, Y. J.; Chen, G. S.; Jiang, M. Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions. Nat. Commun. 2014, 5, 4634.

    Article  Google Scholar 

  16. Yang, G.; Zhang, X.; Kochovski, Z.; Zhang, Y. F.; Dai, B.; Sakai, F.; Jiang, L.; Lu, Y.; Ballauff, M.; Li, X. M.; Liu, C.; Chen, G. S.; Jiang, M. Precise and reversible proteinmicrotubule-like structure with helicity driven by dual supramolecular interactions. J. Am. Chem. Soc. 2016, 138, 1932–1937.

    Article  Google Scholar 

  17. Yang, G.; Ding, H. M.; Kochovski, Z.; Hu, R. T.; Lu, Y.; Ma, Y. Q.; Chen, G. S.; Jiang, M. Highly ordered selfassembly of native proteins into 1D, 2D, and 3D structures modulated by the tether length of assembly-inducing ligands. Angew. Chem., Int. Ed. 2017, 56, 10691–10695.

    Article  Google Scholar 

  18. Rabinovich, G. A.; Toscano, M. A. Turning “sweet” on immunity: Galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 2009, 9, 338–352.

    Article  Google Scholar 

  19. Argüeso, P.; Panjwani, N. Focus on molecules: Galectin-3. Exp. Eye. Res. 2011, 92, 2–3.

    Article  Google Scholar 

  20. Perillo, N. L.; Pace, K. E.; Seilhamer, J. J.; Baum, L. G. Apoptosis of T cells mediated by galectin-1. Nature 1995, 378, 736–739.

    Article  Google Scholar 

  21. He, J. L.; Baum, L. G. Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab. Invest. 2006, 86, 578–590.

    Article  Google Scholar 

  22. Tribulatti, M. V.; Figini, M. G.; Carabelli, J.; Cattaneo, V.; Campetella, O. Redundant and antagonistic functions of galectin-1, -3, and -8 in the elicitation of T cell responses. J. Immunol. 2012, 188, 2991–2999.

    Article  Google Scholar 

  23. Disney, M. D.; Childs-Disney, J. L. "Supra"molecular recognition of galectin 1. Chem. Biol. 2007, 14, 1095–1097.

    Article  Google Scholar 

  24. Thiemann, S.; Baum, L. G. Galectins and immune responses—Just how do they do those things they do? Annu. Rev. Immunol. 2016, 34, 243–264.

    Article  Google Scholar 

  25. Nesmelova, I. V.; Ermakova, E.; Daragan, V. A.; Pang, M.; Menéndez, M.; Lagartera, L.; Solís, D.; Baum, L. G.; Mayo, K. H. Lactose binding to galectin-1 modulates structural dynamics, increases conformational entropy, and occurs with apparent negative cooperativity. J. Mol. Biol. 2010, 397, 1209–1230.

    Article  Google Scholar 

  26. López-Lucendo, M. F.; Solís, D.; André, S.; Hirabayashi, J.; Kasai, K. I.; Kaltner, H.; Gabius, H. J.; Romero, A. Growthregulatory human galectin-1: Crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J. Mol. Biol. 2004, 343, 957–970.

    Article  Google Scholar 

  27. Belitsky, J. M.; Nelson, A.; Hernandez, J. D.; Baum, L. G.; Stoddart, J. F. Multivalent interactions between lectins and supramolecular complexes: Galectin-1 and self-assembled pseudopolyrotaxanes. Chem. Biol. 2007, 14, 1140–1151.

    Article  Google Scholar 

  28. Grishagin, I. V. Automatic cell counting with ImageJ. Anal. Biochem. 2015, 473, 63–65.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51721002, 21504016, and 91527305). We thank Joint Lab for Structural Research at the Integrative Research Institute for the Sciences (IRIS Adlershof, Berlin) for Cryo-TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Zhang, Y., Kochovski, Z. et al. Self-assembly of Human Galectin-1 via dual supramolecular interactions and its inhibition of T-cell agglutination and apoptosis. Nano Res. 11, 5566–5572 (2018). https://doi.org/10.1007/s12274-018-2169-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2169-7

Keywords

Navigation