Skip to main content

Tunable electrochemistry of gold-silver alloy nanoshells


The widespread and increasing interest in enhancing biosensing technologies by increasing their sensitivities and lowering their costs has led to the exploration and application of complex nanomaterials as signal transducers and enhancers. In this work, the electrochemical properties of monodispersed AuAg alloy nanoshells (NSs) with finely tunable morphology, composition, and size are studied to assess their potential as electroactive labels. The controlled corrosion of their silver content, caused by the oxidizing character of dissolved oxygen and chlorides of the electrolyte, allows the generation of a reproducible electrochemical signal that is easily measurable through voltammetric techniques. Remarkably, the underpotential deposition of dissolved Ag+ catalyzed on AuAg NS surfaces is observed and its dependence on the nanoparticle morphology, size, and elemental composition is studied, revealing a strong correlation between the relative amounts of the two metals. The highest catalytic activity is found at Au/Ag ratios higher than ≈ 10, showing how the synergy between both metals is necessary to trigger the enhancement of Ag+ reduction. The ability of AuAg NSs to generate an electrocatalytic current without the need for any strong acid makes them an extremely promising material for biosensing applications.

This is a preview of subscription content, access via your institution.


  1. [1]

    Genç, A.; Patarroyo, J.; Sancho-Parramon, J.; Bastús, N. G.; Puntes, V. F.; Arbiol, J. Hollow metal nanostructures for enhanced plasmonics: Synthesis, local plasmonic properties and applications. Nanophotonics 2017, 6, 193–213.

    Article  Google Scholar 

  2. [2]

    Merkoçi, A. Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens. Bioelectron. 2010, 26, 1164–1177.

    Article  Google Scholar 

  3. [3]

    Kumar, A.; Kim, S.; Nam, J. M. Plasmonically engineered nanoprobes for biomedical applications. J. Am. Chem. Soc. 2016, 138, 14509–14525.

    Article  Google Scholar 

  4. [4]

    Qiu, H.-J.; Li, X.; Xu, H.-T.; Zhang, H.-J.; Wang, Y. Nanoporous metal as a platform for electrochemical and optical sensing. J. Mater. Chem. C 2014, 2, 9788–9799.

    Article  Google Scholar 

  5. [5]

    Maltez-da Costa, M.; de la Escosura-Muñiz, A.; Nogués, C.; Barrios, L.; Ibáñez, E.; Merkoçi, A. Simple monitoring of cancer cells using nanoparticles. Nano Lett. 2012, 12, 4164–4171.

    Article  Google Scholar 

  6. [6]

    Perfézou, M.; Turner, A.; Merkoçi, A. Cancer detection using nanoparticle-based sensors. Chem. Soc. Rev. 2012, 41, 2606–2622.

    Article  Google Scholar 

  7. [7]

    Merkoçi, A. Nanoparticles based electroanalysis in diagnostics applications. Electroanalysis 2013, 25, 15–27.

    Article  Google Scholar 

  8. [8]

    de la Escosura-Muñiz, A.; Ambrosi, A.; Merkoçi, A. Electrochemical analysis with nanoparticle-based biosystems. TrAC Trends Anal. Chem. 2008, 27, 568–584.

    Article  Google Scholar 

  9. [9]

    Kelley, S. O.; Mirkin, C. A.; Walt, D. R.; Ismagilov, R. F.; Toner, M.; Sargent, E. H. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-lengthscale engineering. Nat. Nanotechnol. 2014, 9, 969–980.

    Article  Google Scholar 

  10. [10]

    Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.

    Article  Google Scholar 

  11. [11]

    Byers, C. P.; Zhang, H.; Swearer, D. F.; Yorulmaz, M.; Hoener, B. S.; Huang, D.; Hoggard, A.; Chang, W.-S.; Mulvaney, P.; Ringe, E. et al. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. Sci. Adv. 2015, 1, e1500988.

    Article  Google Scholar 

  12. [12]

    Zugic, B.; Wang, L.; Heine, C.; Zakharov, D. N.; Lechner, B. A. J.; Stach, E. A.; Biener, J.; Salmeron, M.; Madix, R. J.; Friend, C. M. Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts. Nat. Mater. 2017, 16, 558–564.

    Article  Google Scholar 

  13. [13]

    Zheng, Y. Q.; Zeng, J.; Ruditskiy, A.; Liu, M. C.; Xia, Y. N. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 2014, 26, 22–33.

    Article  Google Scholar 

  14. [14]

    Slater, T. J. A.; Macedo, A.; Schroeder, S. L. M.; Burke, M. G.; O’Brien, P.; Camargo, P. H. C.; Haigh, S. J. Correlating catalytic activity of Ag-Au nanoparticles with 3D compositional variations. Nano Lett. 2014, 14, 1921–1926.

    Article  Google Scholar 

  15. [15]

    Shankar, C.; Dao, A. T. N.; Singh, P.; Higashimine, K.; Mott, D. M.; Maenosono, S. Chemical stabilization of gold coated by silver core-shell nanoparticles via electron transfer. Nanotechnology 2012, 23, 245704.

    Article  Google Scholar 

  16. [16]

    Nishimura, S.; Dao, A. T. N.; Mott, D.; Ebitani, K.; Maenosono, S. X-ray absorption near-edge structure and X-ray photoelectron spectroscopy studies of interfacial charge transfer in gold–silver–gold double-shell nanoparticles. J. Phys. Chem. C 2012, 116, 4511–4516.

    Article  Google Scholar 

  17. [17]

    Lewis, E. A.; Slater, T. J. A.; Prestat, E.; Macedo, A.; O’Brien, P.; Camargo, P. H. C.; Haigh, S. J. Real-time imaging and elemental mapping of AgAu nanoparticle transformations. Nanoscale 2014, 6, 13598–13605.

    Article  Google Scholar 

  18. [18]

    Russo, L.; Merkoçi, F.; Patarroyo, J.; Piella, J.; Merkoçi, A.; Bastús, N. G.; Puntes, V. F. Time- and size-resolved plasmonic evolution with nm resolution of galvanic replacement reaction in AuAg nanoshells synthesis. Chem. Mater., in press, DOI: 10.1021/acs.chemmater.8b01488.

  19. [19]

    Xia, X. H.; Wang, Y.; Ruditskiy, A.; Xia, Y. N. 25th anniversary article: Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 2013, 25, 6313–6333.

    Article  Google Scholar 

  20. [20]

    González, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and kirkendall growth at room temperature. Science 2011, 334, 1377–1380.

    Article  Google Scholar 

  21. [21]

    Cobley, C. M.; Xia, Y. N. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R: Reports 2010, 70, 44–62.

    Article  Google Scholar 

  22. [22]

    Bastús, N. G.; Merkoçi, F.; Piella, J.; Puntes, V. F. Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chem. Mater. 2014, 26, 2836–2846.

    Article  Google Scholar 

  23. [23]

    Toh, H. S.; Batchelor-McAuley, C.; Tschulik, K.; Compton, R. G. Electrochemical detection of chloride levels in sweat using silver nanoparticles: A basis for the preliminary screening for cystic fibrosis. Analyst 2013, 138, 4292–4297.

    Article  Google Scholar 

  24. [24]

    Tschulik, K.; Batchelor-McAuley, C.; Toh, H.-S.; Stuart, E. J. E.; Compton, R. G. Electrochemical studies of silver nanoparticles: A guide for experimentalists and a perspective. Phys. Chem. Chem. Phys. 2014, 16, 616–623.

    Article  Google Scholar 

  25. [25]

    Liu, R. X.; Guo, J. H.; Ma, G.; Jiang, P.; Zhang, D. H.; Li, D. X.; Chen, L.; Guo, Y. T.; Ge, G. L. Alloyed crystalline Au–Ag hollow nanostructures with high chemical stability and catalytic performance. ACS Appl. Mater. Interfaces 2016, 8, 16833–16844.

    Article  Google Scholar 

  26. [26]

    Kleijn, S. E. F.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R. Electrochemistry of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 3558–3586.

    Article  Google Scholar 

  27. [27]

    Cloake, S. J.; Toh, H. S.; Lee, P. T.; Salter, C.; Johnston, C.; Compton, R. G. Anodic stripping voltammetry of silver nanoparticles: Aggregation leads to incomplete stripping. ChemistryOpen 2015, 4, 22–26.

    Article  Google Scholar 

  28. [28]

    Holt, L. R.; Plowman, B. J.; Young, N. P.; Tschulik, K.; Compton, R. G. The electrochemical characterization of single core-shell nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 397–400.

    Article  Google Scholar 

  29. [29]

    Saw, E. N.; Grasmik, V.; Rurainsky, C.; Epple, M.; Tschulik, K. Electrochemistry at single bimetallic nanoparticles—Using nano impacts for sizing and compositional analysis of individual AgAu alloy nanoparticles. Faraday Discuss. 2016, 193, 327–338.

    Article  Google Scholar 

  30. [30]

    Liu, Z. N.; Huang, L. H.; Zhang, L. L.; Ma, H. Y.; Ding, Y. Electrocatalytic oxidation of D-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions. Electrochim. Acta 2009, 54, 7286–7293.

    Article  Google Scholar 

  31. [31]

    Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007, 129, 42–43.

    Article  Google Scholar 

  32. [32]

    Herrero, E.; Buller, L. J.; Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 2001, 101, 1897–1930.

    Article  Google Scholar 

  33. [33]

    Rogers, L. B.; Krause, J. C.; Griess, J. C.; Ehrlinger, D. B. The electrodeposition behavior of traces of silver. J. Electrochem. Soc. 1949, 95, 33–46.

    Article  Google Scholar 

  34. [34]

    Lai, G. S.; Wang, L. L.; Wu, J.; Ju, H. X.; Yan, F. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers. Anal. Chim. Acta 2012, 721, 1–6.

    Article  Google Scholar 

  35. [35]

    Chu, X.; Xiang, Z. F.; Fu, X.; Wang, S. P.; Shen, G. L.; Yu, R. Q. Silver-enhanced colloidal gold metalloimmunoassay for Schistosoma japonicum antibody detection. J. Immunol. Methods 2005, 301, 77–88.

    Article  Google Scholar 

  36. [36]

    Zhang, J.; Xiong, Z. B.; Chen, Z. D. Ultrasensitive electrochemical microcystin-LR immunosensor using gold nanoparticle functional polypyrrole microsphere catalyzed silver deposition for signal amplification. Sensors Actuators B: Chem. 2017, 246, 623–630.

    Article  Google Scholar 

  37. [37]

    Price, S. W. T.; Speed, J. D.; Kannan, P.; Russell, A. E. Exploring the first steps in core–shell electrocatalyst preparation: In situ characterization of the underpotential deposition of Cu on supported Au nanoparticles. J. Am. Chem. Soc. 2011, 133, 19448–19458.

    Article  Google Scholar 

  38. [38]

    Mulvaney, P.; Linnert, T.; Henglein, A. Surface chemistry of colloidal silver in aqueous solution: Observations on chemisorption and reactivity. J. Phys. Chem. 1991, 95, 7843–7846.

    Article  Google Scholar 

  39. [39]

    He, W. W.; Wu, X. C.; Liu, J. B.; Hu, X. N.; Zhang, K.; Hou, S.; Zhou, W. Y.; Xie, S. S. Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem. Mater. 2010, 22, 2988–2994.

    Article  Google Scholar 

  40. [40]

    Tominaga, M.; Shimazoe, T.; Nagashima, M.; Kusuda, H.; Kubo, A.; Kuwahara, Y.; Taniguchi, I. Electrocatalytic oxidation of glucose at gold-silver alloy, silver and gold nanoparticles in an alkaline solution. J. Electroanal. Chem. 2006, 590, 37–46.

    Article  Google Scholar 

  41. [41]

    Scanlon, M. D.; Peljo, P.; Méndez, M. A.; Smirnov, E.; Girault, H. H. Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles. Chem. Sci. 2015, 6, 2705–2720.

    Article  Google Scholar 

  42. [42]

    Prodan, E.; Nordlander, P. Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 2004, 120, 5444–5454.

    Article  Google Scholar 

  43. [43]

    Mahmoud, M. A.; El-Sayed, M. A. Gold nanoframes: Very high surface plasmon fields and excellent near-infrared sensors. J. Am. Chem. Soc. 2010, 132, 12704–12710.

    Article  Google Scholar 

Download references


This work was carried out within the “Doctorat en Quìmica” PhD programme of Universitat Autònoma de Barcelona, supported by the Spanish MINECO (No. MAT2015-70725-R) and from the Catalan Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (No. 2017-SGR-143). Financial support from the HISENTS (685817) Project financed by the European Community under H20202 Capacities Programme is gratefully acknowledged. It was also funded by the CERCA Program/Generalitat de Catalunya. ICN2 acknowledges the support of the Spanish MINECO through the Severo Ochoa Centers of Excellence Program under Grant SEV2201320295.

Author information



Corresponding author

Correspondence to Arben Merkoçi.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Russo, L., Puntes, V. & Merkoçi, A. Tunable electrochemistry of gold-silver alloy nanoshells. Nano Res. 11, 6336–6345 (2018).

Download citation


  • Au nanoshells
  • nanoparticles
  • surface chemistry
  • underpotential deposition