Advertisement

Nano Research

, Volume 11, Issue 12, pp 6336–6345 | Cite as

Tunable electrochemistry of gold-silver alloy nanoshells

  • Lorenzo Russo
  • Victor Puntes
  • Arben MerkoçiEmail author
Research Article

Abstract

The widespread and increasing interest in enhancing biosensing technologies by increasing their sensitivities and lowering their costs has led to the exploration and application of complex nanomaterials as signal transducers and enhancers. In this work, the electrochemical properties of monodispersed AuAg alloy nanoshells (NSs) with finely tunable morphology, composition, and size are studied to assess their potential as electroactive labels. The controlled corrosion of their silver content, caused by the oxidizing character of dissolved oxygen and chlorides of the electrolyte, allows the generation of a reproducible electrochemical signal that is easily measurable through voltammetric techniques. Remarkably, the underpotential deposition of dissolved Ag+ catalyzed on AuAg NS surfaces is observed and its dependence on the nanoparticle morphology, size, and elemental composition is studied, revealing a strong correlation between the relative amounts of the two metals. The highest catalytic activity is found at Au/Ag ratios higher than ≈ 10, showing how the synergy between both metals is necessary to trigger the enhancement of Ag+ reduction. The ability of AuAg NSs to generate an electrocatalytic current without the need for any strong acid makes them an extremely promising material for biosensing applications.

Keywords

Au nanoshells nanoparticles surface chemistry underpotential deposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was carried out within the “Doctorat en Quìmica” PhD programme of Universitat Autònoma de Barcelona, supported by the Spanish MINECO (No. MAT2015-70725-R) and from the Catalan Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (No. 2017-SGR-143). Financial support from the HISENTS (685817) Project financed by the European Community under H20202 Capacities Programme is gratefully acknowledged. It was also funded by the CERCA Program/Generalitat de Catalunya. ICN2 acknowledges the support of the Spanish MINECO through the Severo Ochoa Centers of Excellence Program under Grant SEV2201320295.

Supplementary material

12274_2018_2157_MOESM1_ESM.pdf (543 kb)
Tunable electrochemistry of gold-silver alloy nanoshells

References

  1. [1]
    Genç, A.; Patarroyo, J.; Sancho-Parramon, J.; Bastús, N. G.; Puntes, V. F.; Arbiol, J. Hollow metal nanostructures for enhanced plasmonics: Synthesis, local plasmonic properties and applications. Nanophotonics 2017, 6, 193–213.CrossRefGoogle Scholar
  2. [2]
    Merkoçi, A. Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens. Bioelectron. 2010, 26, 1164–1177.CrossRefGoogle Scholar
  3. [3]
    Kumar, A.; Kim, S.; Nam, J. M. Plasmonically engineered nanoprobes for biomedical applications. J. Am. Chem. Soc. 2016, 138, 14509–14525.CrossRefGoogle Scholar
  4. [4]
    Qiu, H.-J.; Li, X.; Xu, H.-T.; Zhang, H.-J.; Wang, Y. Nanoporous metal as a platform for electrochemical and optical sensing. J. Mater. Chem. C 2014, 2, 9788–9799.CrossRefGoogle Scholar
  5. [5]
    Maltez-da Costa, M.; de la Escosura-Muñiz, A.; Nogués, C.; Barrios, L.; Ibáñez, E.; Merkoçi, A. Simple monitoring of cancer cells using nanoparticles. Nano Lett. 2012, 12, 4164–4171.CrossRefGoogle Scholar
  6. [6]
    Perfézou, M.; Turner, A.; Merkoçi, A. Cancer detection using nanoparticle-based sensors. Chem. Soc. Rev. 2012, 41, 2606–2622.CrossRefGoogle Scholar
  7. [7]
    Merkoçi, A. Nanoparticles based electroanalysis in diagnostics applications. Electroanalysis 2013, 25, 15–27.CrossRefGoogle Scholar
  8. [8]
    de la Escosura-Muñiz, A.; Ambrosi, A.; Merkoçi, A. Electrochemical analysis with nanoparticle-based biosystems. TrAC Trends Anal. Chem. 2008, 27, 568–584.CrossRefGoogle Scholar
  9. [9]
    Kelley, S. O.; Mirkin, C. A.; Walt, D. R.; Ismagilov, R. F.; Toner, M.; Sargent, E. H. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-lengthscale engineering. Nat. Nanotechnol. 2014, 9, 969–980.CrossRefGoogle Scholar
  10. [10]
    Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.CrossRefGoogle Scholar
  11. [11]
    Byers, C. P.; Zhang, H.; Swearer, D. F.; Yorulmaz, M.; Hoener, B. S.; Huang, D.; Hoggard, A.; Chang, W.-S.; Mulvaney, P.; Ringe, E. et al. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. Sci. Adv. 2015, 1, e1500988.CrossRefGoogle Scholar
  12. [12]
    Zugic, B.; Wang, L.; Heine, C.; Zakharov, D. N.; Lechner, B. A. J.; Stach, E. A.; Biener, J.; Salmeron, M.; Madix, R. J.; Friend, C. M. Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts. Nat. Mater. 2017, 16, 558–564.CrossRefGoogle Scholar
  13. [13]
    Zheng, Y. Q.; Zeng, J.; Ruditskiy, A.; Liu, M. C.; Xia, Y. N. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 2014, 26, 22–33.CrossRefGoogle Scholar
  14. [14]
    Slater, T. J. A.; Macedo, A.; Schroeder, S. L. M.; Burke, M. G.; O’Brien, P.; Camargo, P. H. C.; Haigh, S. J. Correlating catalytic activity of Ag-Au nanoparticles with 3D compositional variations. Nano Lett. 2014, 14, 1921–1926.CrossRefGoogle Scholar
  15. [15]
    Shankar, C.; Dao, A. T. N.; Singh, P.; Higashimine, K.; Mott, D. M.; Maenosono, S. Chemical stabilization of gold coated by silver core-shell nanoparticles via electron transfer. Nanotechnology 2012, 23, 245704.CrossRefGoogle Scholar
  16. [16]
    Nishimura, S.; Dao, A. T. N.; Mott, D.; Ebitani, K.; Maenosono, S. X-ray absorption near-edge structure and X-ray photoelectron spectroscopy studies of interfacial charge transfer in gold–silver–gold double-shell nanoparticles. J. Phys. Chem. C 2012, 116, 4511–4516.CrossRefGoogle Scholar
  17. [17]
    Lewis, E. A.; Slater, T. J. A.; Prestat, E.; Macedo, A.; O’Brien, P.; Camargo, P. H. C.; Haigh, S. J. Real-time imaging and elemental mapping of AgAu nanoparticle transformations. Nanoscale 2014, 6, 13598–13605.CrossRefGoogle Scholar
  18. [18]
    Russo, L.; Merkoçi, F.; Patarroyo, J.; Piella, J.; Merkoçi, A.; Bastús, N. G.; Puntes, V. F. Time- and size-resolved plasmonic evolution with nm resolution of galvanic replacement reaction in AuAg nanoshells synthesis. Chem. Mater., in press, DOI: 10.1021/acs.chemmater.8b01488.Google Scholar
  19. [19]
    Xia, X. H.; Wang, Y.; Ruditskiy, A.; Xia, Y. N. 25th anniversary article: Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 2013, 25, 6313–6333.CrossRefGoogle Scholar
  20. [20]
    González, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and kirkendall growth at room temperature. Science 2011, 334, 1377–1380.CrossRefGoogle Scholar
  21. [21]
    Cobley, C. M.; Xia, Y. N. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R: Reports 2010, 70, 44–62.CrossRefGoogle Scholar
  22. [22]
    Bastús, N. G.; Merkoçi, F.; Piella, J.; Puntes, V. F. Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chem. Mater. 2014, 26, 2836–2846.CrossRefGoogle Scholar
  23. [23]
    Toh, H. S.; Batchelor-McAuley, C.; Tschulik, K.; Compton, R. G. Electrochemical detection of chloride levels in sweat using silver nanoparticles: A basis for the preliminary screening for cystic fibrosis. Analyst 2013, 138, 4292–4297.CrossRefGoogle Scholar
  24. [24]
    Tschulik, K.; Batchelor-McAuley, C.; Toh, H.-S.; Stuart, E. J. E.; Compton, R. G. Electrochemical studies of silver nanoparticles: A guide for experimentalists and a perspective. Phys. Chem. Chem. Phys. 2014, 16, 616–623.CrossRefGoogle Scholar
  25. [25]
    Liu, R. X.; Guo, J. H.; Ma, G.; Jiang, P.; Zhang, D. H.; Li, D. X.; Chen, L.; Guo, Y. T.; Ge, G. L. Alloyed crystalline Au–Ag hollow nanostructures with high chemical stability and catalytic performance. ACS Appl. Mater. Interfaces 2016, 8, 16833–16844.CrossRefGoogle Scholar
  26. [26]
    Kleijn, S. E. F.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R. Electrochemistry of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 3558–3586.CrossRefGoogle Scholar
  27. [27]
    Cloake, S. J.; Toh, H. S.; Lee, P. T.; Salter, C.; Johnston, C.; Compton, R. G. Anodic stripping voltammetry of silver nanoparticles: Aggregation leads to incomplete stripping. ChemistryOpen 2015, 4, 22–26.CrossRefGoogle Scholar
  28. [28]
    Holt, L. R.; Plowman, B. J.; Young, N. P.; Tschulik, K.; Compton, R. G. The electrochemical characterization of single core-shell nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 397–400.CrossRefGoogle Scholar
  29. [29]
    Saw, E. N.; Grasmik, V.; Rurainsky, C.; Epple, M.; Tschulik, K. Electrochemistry at single bimetallic nanoparticles—Using nano impacts for sizing and compositional analysis of individual AgAu alloy nanoparticles. Faraday Discuss. 2016, 193, 327–338.CrossRefGoogle Scholar
  30. [30]
    Liu, Z. N.; Huang, L. H.; Zhang, L. L.; Ma, H. Y.; Ding, Y. Electrocatalytic oxidation of D-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions. Electrochim. Acta 2009, 54, 7286–7293.CrossRefGoogle Scholar
  31. [31]
    Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007, 129, 42–43.CrossRefGoogle Scholar
  32. [32]
    Herrero, E.; Buller, L. J.; Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 2001, 101, 1897–1930.CrossRefGoogle Scholar
  33. [33]
    Rogers, L. B.; Krause, J. C.; Griess, J. C.; Ehrlinger, D. B. The electrodeposition behavior of traces of silver. J. Electrochem. Soc. 1949, 95, 33–46.CrossRefGoogle Scholar
  34. [34]
    Lai, G. S.; Wang, L. L.; Wu, J.; Ju, H. X.; Yan, F. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers. Anal. Chim. Acta 2012, 721, 1–6.CrossRefGoogle Scholar
  35. [35]
    Chu, X.; Xiang, Z. F.; Fu, X.; Wang, S. P.; Shen, G. L.; Yu, R. Q. Silver-enhanced colloidal gold metalloimmunoassay for Schistosoma japonicum antibody detection. J. Immunol. Methods 2005, 301, 77–88.CrossRefGoogle Scholar
  36. [36]
    Zhang, J.; Xiong, Z. B.; Chen, Z. D. Ultrasensitive electrochemical microcystin-LR immunosensor using gold nanoparticle functional polypyrrole microsphere catalyzed silver deposition for signal amplification. Sensors Actuators B: Chem. 2017, 246, 623–630.CrossRefGoogle Scholar
  37. [37]
    Price, S. W. T.; Speed, J. D.; Kannan, P.; Russell, A. E. Exploring the first steps in core–shell electrocatalyst preparation: In situ characterization of the underpotential deposition of Cu on supported Au nanoparticles. J. Am. Chem. Soc. 2011, 133, 19448–19458.CrossRefGoogle Scholar
  38. [38]
    Mulvaney, P.; Linnert, T.; Henglein, A. Surface chemistry of colloidal silver in aqueous solution: Observations on chemisorption and reactivity. J. Phys. Chem. 1991, 95, 7843–7846.CrossRefGoogle Scholar
  39. [39]
    He, W. W.; Wu, X. C.; Liu, J. B.; Hu, X. N.; Zhang, K.; Hou, S.; Zhou, W. Y.; Xie, S. S. Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem. Mater. 2010, 22, 2988–2994.CrossRefGoogle Scholar
  40. [40]
    Tominaga, M.; Shimazoe, T.; Nagashima, M.; Kusuda, H.; Kubo, A.; Kuwahara, Y.; Taniguchi, I. Electrocatalytic oxidation of glucose at gold-silver alloy, silver and gold nanoparticles in an alkaline solution. J. Electroanal. Chem. 2006, 590, 37–46.CrossRefGoogle Scholar
  41. [41]
    Scanlon, M. D.; Peljo, P.; Méndez, M. A.; Smirnov, E.; Girault, H. H. Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles. Chem. Sci. 2015, 6, 2705–2720.CrossRefGoogle Scholar
  42. [42]
    Prodan, E.; Nordlander, P. Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 2004, 120, 5444–5454.CrossRefGoogle Scholar
  43. [43]
    Mahmoud, M. A.; El-Sayed, M. A. Gold nanoframes: Very high surface plasmon fields and excellent near-infrared sensors. J. Am. Chem. Soc. 2010, 132, 12704–12710.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lorenzo Russo
    • 1
    • 2
  • Victor Puntes
    • 1
    • 3
    • 4
  • Arben Merkoçi
    • 1
    • 4
    Email author
  1. 1.Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, BellaterraBarcelonaSpain
  2. 2.Universitat Autònoma de Barcelona (UAB), Campus UAB, BellaterraBarcelonaSpain
  3. 3.Vall d’Hebron Institut de Recerca (VHIR)BarcelonaSpain
  4. 4.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations