A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake


A topologically mediated synthesis of porous boron nitride aerogel has been experimentally and theoretically investigated for carbon dioxide (CO2) uptake. Replacement of the carbon atoms in a precursor aerogel of graphene oxide and carbon nanotubes was achieved using an elemental substitution reaction, to obtain a boron and nitrogen framework. The newly prepared BN aerogel possessed a specific surface area of 716.56 m2/g and exhibited an unprecedented twentyfold increase in CO2 uptake over N2, adsorbing 100 cc/g at 273 K and 80 cc/g in ambient conditions, as verified by adsorption isotherms via the multipoint Brunauer-Emmett-Teller (BET) method. Density functional theory calculations were performed to give hints on the mechanism of such high selectivity of CO2 over N2 adsorption in BN aerogel, which may be due to the interaction between the intrinsic polar nature of B–N bonds and the high quadrupole moment of CO2 over N2.

This is a preview of subscription content, log in to check access.


  1. [1]

    Pachauri, R. K. Reisinger; IPCC Fifth Assessment Report, Intergovernmental Panel on Climate Change, 2014.

    Google Scholar 

  2. [2]

    Lu, C.; Bai, H.; Wu, B. L.; Su, F. S.; Hwang, J. F. Comparative study of CO2 capture by carbon nanotubes, activated carbon, and zeolites. Energy Fuels 2008, 22, 3050–3056.

    Article  Google Scholar 

  3. [3]

    Kortunov, P. V.; Baugh, L. S.; Siskin, M. Pathways of the chemical reaction of carbon dioxide with ionic liquids and amines in ionic liquid solution. Energy Fuels 2015, 29, 5990–6007.

    Article  Google Scholar 

  4. [4]

    Ram Reddy, M. K.; Xu, Z. P.; Lu, G. Q.; Diniz da Costa, J. C. Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Ind. Eng. Chem. Res. 2006, 45, 7504–7509.

    Article  Google Scholar 

  5. [5]

    Keskin, S.; van Heest, T. M.; Sholl, D. S. Can metal-organic framework materials play a useful role in large-scale carbon dioxide separation? ChemSusChem 2010, 3, 879–891.

    Article  Google Scholar 

  6. [6]

    Thomas, A. Functional materials: From hard to soft porous frameworks. Angew. Chem., Int. Ed. 2010, 49, 8328–8344.

    Article  Google Scholar 

  7. [7]

    Patel, H. A.; Karadas, F.; Canlier, A.; Park, J.; Deniz, E.; Jung, Y.; Atilhan, M.; Yavuz, C. T. High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. J. Mater. Chem. 2012, 22, 8431–8437.

    Article  Google Scholar 

  8. [8]

    Dawson, R.; Cooper, A. I.; Adams, D. J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2012, 37, 530–563.

    Article  Google Scholar 

  9. [9]

    Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.

    Article  Google Scholar 

  10. [10]

    Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191–214.

    Article  Google Scholar 

  11. [11]

    Yaghi, O. M.; Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

    Article  Google Scholar 

  12. [12]

    Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.

    Article  Google Scholar 

  13. [13]

    Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67.

    Article  Google Scholar 

  14. [14]

    Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O’Keeffe, M.; Yaghi, O. M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 2009, 131, 3875–3877.

    Article  Google Scholar 

  15. [15]

    Torrisi, A.; Bell, R. G.; Mellot-Draznieks, C. Functionalized MOFs for enhanced CO2 capture. Cryst. Growth Des. 2010, 10, 2839–2841.

    Article  Google Scholar 

  16. [16]

    Kizzie, A. C.; Wong-Foy, A. G.; Matzger, A. J. Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 2011, 27, 6368–6373.

    Article  Google Scholar 

  17. [17]

    Wang, Q.; Luo, J. Z.; Zhong, Z. Y.; Borgna, A. CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy Environ. Sci. 2011, 4, 42–55.

    Article  Google Scholar 

  18. [18]

    Liu, J.; Tian, J.; Thallapally, P. K.; McGrail, B. P. Selective CO2 capture from flue gas using metal–organic frameworks-A fixed bed study. J. Phys. Chem. C 2012, 116, 9575–9581.

    Article  Google Scholar 

  19. [19]

    Puxty, G.; Rowland, R.; Allport, A.; Yang, Q.; Bown, M.; Burns, R.; Maeder, M.; Attalla, M. Carbon dioxide postcombustion capture: A novel screening study of the carbon dioxide absorption performance of 76 amines. Environ. Sci. Technol. 2009, 43, 6427–6433.

    Article  Google Scholar 

  20. [20]

    Siriwardane, R. V.; Shen, M. S.; Fisher, E. P.; Poston, J. A. Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 2001, 15, 279–284.

    Article  Google Scholar 

  21. [21]

    Xiang, S. C.; He, Y. B.; Zhang, Z. J.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. L. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 2012, 3, 954.

    Article  Google Scholar 

  22. [22]

    Ahn, S.; Song, H. J.; Park, J. W.; Lee, J. H.; Lee, I. Y.; Jang, K. R. Characterization of metal corrosion by aqueous amino acid salts for the capture of CO2. Korean J. Chem. Eng. 2010, 27, 1576–1580.

    Article  Google Scholar 

  23. [23]

    Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. Ö.; Hupp, J. T. Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016–15021.

    Article  Google Scholar 

  24. [24]

    El-Roz, M.; Bazin, P.; Celic, T. B.; Logar, N. Z.; Thibault-Starzyk, F. Pore occupancy changes water/ethanol separation in a metal–organic framework-quantitative map of CO adsorption by IR. J. Phys. Chem. C 2015, 119, 22570–22576.

    Article  Google Scholar 

  25. [25]

    Henninger, S. K.; Habib, H. A.; Janiak, C. MOFs as adsorbents for low temperature heating and cooling applications. J. Am. Chem. Soc. 2009, 131, 2776–2777.

    Article  Google Scholar 

  26. [26]

    Jasuja, H.; Zang, J.; Sholl, D. S.; Walton, K. S. Rational tuning of water vapor and CO2 adsorption in highly stable Zr-based MOFs. J. Phys. Chem. C 2012, 116, 23526–23532.

    Article  Google Scholar 

  27. [27]

    An, J.; Shade, C. M.; Chengelis-Czegan, D. A.; Petoud, S; Rosi, N. L. Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J. Am. Chem. Soc. 2011, 133, 1220–1223.

    Article  Google Scholar 

  28. [28]

    Peng, Y.; Srinivas, G.; Wilmer, C. E.; Eryazici, I.; Snurr, R. Q.; Hupp, J. T.; Yildirim, T.; Farha, O. K. Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal–organic framework NU-111. Chem. Commun. 2013, 49, 2992–2994.

    Article  Google Scholar 

  29. [29]

    Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S. Q.; Space, B.; Wojtas, L. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013, 495, 80–84.

    Article  Google Scholar 

  30. [30]

    Jin, Y. H.; Voss, B. A.; Jin, A.; Long, H.; Noble, R. D.; Zhang, W. Highly CO2-selective organic molecular cages: What determines the CO2 selectivity. J. Am. Chem. Soc. 2011, 133, 6650–6658.

    Article  Google Scholar 

  31. [31]

    Hao, G. P.; Li, W. C.; Qian, D.; Lu, A. H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 2010, 22, 853–857.

    Article  Google Scholar 

  32. [32]

    Sevilla, M.; Valle-Vigón, P.; Fuertes, A. B. N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 2011, 21, 2781–2787.

    Article  Google Scholar 

  33. [33]

    Li, X. F.; Xue, Q. Z.; He, D. L.; Zhu, L.; Du, Y. G.; Xing, W.; Zhang, T. Sulfur–nitrogen codoped graphite slit-pore for enhancing selective carbon dioxide adsorption: Insights from molecular simulations. ACS Sustainable Chem. Eng. 2017, 5, 8815–8823.

    Article  Google Scholar 

  34. [34]

    Li, X. F.; Zhu, L.; Xue, Q. Z.; Chang, X.; Ling, C. C.; Xing, W. Superior selective CO2 adsorption of C3N pores: GCMC and DFT simulations. ACS Appl. Mater. Interfaces 2017, 9, 31161–31169.

    Article  Google Scholar 

  35. [35]

    Li, X. F.; Guo, T. C.; Zhu, L.; Ling, C. C.; Xue, Q. Z.; Xing, W. Charge-modulated CO2 capture of C3N nanosheet: Insights from DFT calculations. Chem. Eng. J. 2018, 338, 92–98.

    Article  Google Scholar 

  36. [36]

    Zhao, Y. F.; Liu, X.; Yao, K. X.; Zhao, L.; Han, Y. Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon. Chem. Mater. 2012, 24, 4725–4734.

    Article  Google Scholar 

  37. [37]

    Patel, H. A.; Je, S. H.; Park, J.; Chen, D. P.; Jung, Y.; Yavuz, C. T.; Coskun, A. Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nat. Commun. 2013, 4, 1357.

    Article  Google Scholar 

  38. [38]

    Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    Article  Google Scholar 

  39. [39]

    Gong, Y. J.; Shi, G.; Zhang, Z. H.; Zhou, W.; Jung, J.; Gao, W. L.; Ma, L. L.; Yang, Y.; Yang, S. B.; You, G. et al. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat. Commun. 2014, 5, 3193.

    Article  Google Scholar 

  40. [40]

    Liu, J. J.; Kutty, R. G.; Zheng, Q. S.; Eswariah, V.; Sreejith, S.; Liu, Z. Hexagonal boron nitride nanosheets as high-performance binder-free fire-resistant wood coatings. Small 2017, 13, 1602456.

    Article  Google Scholar 

  41. [41]

    Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.

    Article  Google Scholar 

  42. [42]

    Song, Y. X.; Li, B.; Yang, S. W.; Ding, G. Q.; Zhang, C. R.; Xie, X. M. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition. Sci. Rep. 2015, 5, 10337.

    Article  Google Scholar 

  43. [43]

    Liu, F.; Mo, X. S.; Gan, H. B.; Guo, T. Y.; Wang, X. B.; Chen, B.; Chen, J.; Deng, S. Z.; Xu, N. S.; Sekiguchi, T. et al. Cheap, gram-scale fabrication of BN nanosheets via substitution reaction of graphite powders and their use for mechanical reinforcement of polymers. Sci. Rep. 2014, 4, 4211.

    Article  Google Scholar 

  44. [44]

    Rousseas, M.; Goldstein, A. P.; Mickelson, W.; Worsley, M. A.; Woo, L.; Zettl, A. Synthesis of highly crystalline sp2- bonded boron nitride aerogels. ACS Nano 2013, 7, 8540–8546.

    Article  Google Scholar 

  45. [45]

    Hinds, B. J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L. G. Aligned multiwalled carbon nanotube membranes. Science 2004, 303, 62–65.

    Article  Google Scholar 

  46. [46]

    Suk, M. E.; Raghunathan, A. V.; Aluru, N. R. Fast reverse osmosis using boron nitride and carbon nanotubes. Appl. Phys. Lett. 2008, 92, 133120.

    Article  Google Scholar 

  47. [47]

    Vinod, S.; Tiwary, C. S.; da Silva, A. P. A.; Taha-Tijerina, J.; Ozden, S.; Chipara, A. C.; Vajtai, R.; Galvao, D. S.; Narayanan, T. N.; Ajayan, P. M. Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers. Nat. Commun. 2014, 5, 4541.

    Article  Google Scholar 

  48. [48]

    Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    Article  Google Scholar 

  49. [49]

    Marom, N.; Bernstein, J.; Garel, J.; Tkatchenko, A.; Joselevich, E.; Kronik, L.; Hod, O. Stacking and registry effects in layered materials: The case of hexagonal boron nitride. Phys. Rev. Lett. 2010, 105, 046801.

    Article  Google Scholar 

  50. [50]

    Raveendran, P.; Ikushima, Y.; Wallen, S. L. Polar attributes of supercritical carbon dioxide. Acc. Chem. Res. 2005, 38, 478–485.

    Article  Google Scholar 

  51. [51]

    Morrison, M. A.; Hay, P. J. Molecular properties of N2 and CO2 as functions of nuclear geometry: Polarizabilities, quadrupole moments, and dipole moments. J. Chem. Phys. 1979, 70, 4034.

    Article  Google Scholar 

  52. [52]

    Williams, J. H. The molecular electric quadrupole moment and solid-state architecture. Acc. Chem. Res. 1993, 26, 593–598.

    Article  Google Scholar 

  53. [53]

    Lenel, F. V. Uber die Adsorptions warme von Edelgasen und Kohlendioxyd an Ionenkristallen. Physik. Chem. B 1933, 23, 379.

    Google Scholar 

  54. [54]

    Orr, W. J. C. Calculations of the adsorption behaviour of argon on alkali halide crystals. Trans. Faraday Soc. 1939, 35, 1247–1265.

    Article  Google Scholar 

  55. [55]

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  56. [56]

    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  57. [57]

    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  58. [58]

    Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

    Article  Google Scholar 

  59. [59]

    Lee, K.; Murray, É. D.; Kong, L. Z.; Lundqvist, B. I.; Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 2010, 82, 081101.

    Article  Google Scholar 

  60. [60]

    Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2010, 22, 022201.

    Article  Google Scholar 

  61. [61]

    Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

    Article  Google Scholar 

  62. [62]

    Kim, H. Effect of van der Waals interaction on the structural and cohesive properties of black phosphorus. J. Korean Phys. Soc. 2014, 64, 547–553.

    Article  Google Scholar 

  63. [63]

    Wu, J. B.; Hu, Z. X.; Zhang, X.; Han, W. P.; Lu, Y.; Shi, W.; Qiao, X. F.; Ijiäs, M.; Milana, S.; Ji, W. et al. Interface coupling in twisted multilayer graphene by resonant Raman spectroscopy of layer breathing modes. ACS Nano 2015, 9, 7440–7449.

    Article  Google Scholar 

  64. [64]

    Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. A.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

    Article  Google Scholar 

  65. [65]

    Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    Article  Google Scholar 

  66. [66]

    Hu, Z. X.; Kong, X. H.; Qiao, J. S.; Normand, B.; Ji, W. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale 2016, 8, 2740–2750.

    Article  Google Scholar 

  67. [67]

    Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

    Article  Google Scholar 

Download references


MOE2016-T2-1-131 (Tier 2) Singapore was acknowledged. Project supported by the National Natural Science Foundation of China (Nos. 11274380, 91433103, 11622437, and 61674171), the Fundamental Research Funds for the Central Universities, China and the Research Funds of Renmin University of China (No. 16XNLQ01). Calculations were performed at the physics lab of high-performance computing of Renmin University of China.

Author information



Corresponding authors

Correspondence to Yanli Zhao or Wei Ji or Zheng Liu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kutty, R.G., Sreejith, S., Kong, X. et al. A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake. Nano Res. 11, 6325–6335 (2018). https://doi.org/10.1007/s12274-018-2156-z

Download citation


  • boron nitride
  • boron nitride nanotube
  • aerogel
  • quadrupole moment
  • selective CO2 adsorption