Advertisement

Nano Research

, Volume 11, Issue 12, pp 6325–6335 | Cite as

A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake

  • R. Govindan Kutty
  • Sivaramapanicker Sreejith
  • Xianghua Kong
  • Haiyong He
  • Hong Wang
  • Junhao Lin
  • Kazu Suenaga
  • Chwee Teck Lim
  • Yanli ZhaoEmail author
  • Wei JiEmail author
  • Zheng LiuEmail author
Research Article

Abstract

A topologically mediated synthesis of porous boron nitride aerogel has been experimentally and theoretically investigated for carbon dioxide (CO2) uptake. Replacement of the carbon atoms in a precursor aerogel of graphene oxide and carbon nanotubes was achieved using an elemental substitution reaction, to obtain a boron and nitrogen framework. The newly prepared BN aerogel possessed a specific surface area of 716.56 m2/g and exhibited an unprecedented twentyfold increase in CO2 uptake over N2, adsorbing 100 cc/g at 273 K and 80 cc/g in ambient conditions, as verified by adsorption isotherms via the multipoint Brunauer-Emmett-Teller (BET) method. Density functional theory calculations were performed to give hints on the mechanism of such high selectivity of CO2 over N2 adsorption in BN aerogel, which may be due to the interaction between the intrinsic polar nature of B–N bonds and the high quadrupole moment of CO2 over N2.

Keywords

boron nitride boron nitride nanotube aerogel quadrupole moment selective CO2 adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

MOE2016-T2-1-131 (Tier 2) Singapore was acknowledged. Project supported by the National Natural Science Foundation of China (Nos. 11274380, 91433103, 11622437, and 61674171), the Fundamental Research Funds for the Central Universities, China and the Research Funds of Renmin University of China (No. 16XNLQ01). Calculations were performed at the physics lab of high-performance computing of Renmin University of China.

Supplementary material

12274_2018_2156_MOESM1_ESM.pdf (2.1 mb)
A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake

References

  1. [1]
    Pachauri, R. K. Reisinger; IPCC Fifth Assessment Report, Intergovernmental Panel on Climate Change, 2014.Google Scholar
  2. [2]
    Lu, C.; Bai, H.; Wu, B. L.; Su, F. S.; Hwang, J. F. Comparative study of CO2 capture by carbon nanotubes, activated carbon, and zeolites. Energy Fuels 2008, 22, 3050–3056.CrossRefGoogle Scholar
  3. [3]
    Kortunov, P. V.; Baugh, L. S.; Siskin, M. Pathways of the chemical reaction of carbon dioxide with ionic liquids and amines in ionic liquid solution. Energy Fuels 2015, 29, 5990–6007.CrossRefGoogle Scholar
  4. [4]
    Ram Reddy, M. K.; Xu, Z. P.; Lu, G. Q.; Diniz da Costa, J. C. Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Ind. Eng. Chem. Res. 2006, 45, 7504–7509.CrossRefGoogle Scholar
  5. [5]
    Keskin, S.; van Heest, T. M.; Sholl, D. S. Can metal-organic framework materials play a useful role in large-scale carbon dioxide separation? ChemSusChem 2010, 3, 879–891.CrossRefGoogle Scholar
  6. [6]
    Thomas, A. Functional materials: From hard to soft porous frameworks. Angew. Chem., Int. Ed. 2010, 49, 8328–8344.CrossRefGoogle Scholar
  7. [7]
    Patel, H. A.; Karadas, F.; Canlier, A.; Park, J.; Deniz, E.; Jung, Y.; Atilhan, M.; Yavuz, C. T. High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. J. Mater. Chem. 2012, 22, 8431–8437.CrossRefGoogle Scholar
  8. [8]
    Dawson, R.; Cooper, A. I.; Adams, D. J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2012, 37, 530–563.CrossRefGoogle Scholar
  9. [9]
    Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.CrossRefGoogle Scholar
  10. [10]
    Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191–214.CrossRefGoogle Scholar
  11. [11]
    Yaghi, O. M.; Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.CrossRefGoogle Scholar
  12. [12]
    Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.CrossRefGoogle Scholar
  13. [13]
    Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67.CrossRefGoogle Scholar
  14. [14]
    Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O’Keeffe, M.; Yaghi, O. M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 2009, 131, 3875–3877.CrossRefGoogle Scholar
  15. [15]
    Torrisi, A.; Bell, R. G.; Mellot-Draznieks, C. Functionalized MOFs for enhanced CO2 capture. Cryst. Growth Des. 2010, 10, 2839–2841.CrossRefGoogle Scholar
  16. [16]
    Kizzie, A. C.; Wong-Foy, A. G.; Matzger, A. J. Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 2011, 27, 6368–6373.CrossRefGoogle Scholar
  17. [17]
    Wang, Q.; Luo, J. Z.; Zhong, Z. Y.; Borgna, A. CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy Environ. Sci. 2011, 4, 42–55.CrossRefGoogle Scholar
  18. [18]
    Liu, J.; Tian, J.; Thallapally, P. K.; McGrail, B. P. Selective CO2 capture from flue gas using metal–organic frameworks-A fixed bed study. J. Phys. Chem. C 2012, 116, 9575–9581.CrossRefGoogle Scholar
  19. [19]
    Puxty, G.; Rowland, R.; Allport, A.; Yang, Q.; Bown, M.; Burns, R.; Maeder, M.; Attalla, M. Carbon dioxide postcombustion capture: A novel screening study of the carbon dioxide absorption performance of 76 amines. Environ. Sci. Technol. 2009, 43, 6427–6433.CrossRefGoogle Scholar
  20. [20]
    Siriwardane, R. V.; Shen, M. S.; Fisher, E. P.; Poston, J. A. Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 2001, 15, 279–284.CrossRefGoogle Scholar
  21. [21]
    Xiang, S. C.; He, Y. B.; Zhang, Z. J.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. L. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 2012, 3, 954.CrossRefGoogle Scholar
  22. [22]
    Ahn, S.; Song, H. J.; Park, J. W.; Lee, J. H.; Lee, I. Y.; Jang, K. R. Characterization of metal corrosion by aqueous amino acid salts for the capture of CO2. Korean J. Chem. Eng. 2010, 27, 1576–1580.CrossRefGoogle Scholar
  23. [23]
    Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. Ö.; Hupp, J. T. Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016–15021.CrossRefGoogle Scholar
  24. [24]
    El-Roz, M.; Bazin, P.; Celic, T. B.; Logar, N. Z.; Thibault-Starzyk, F. Pore occupancy changes water/ethanol separation in a metal–organic framework-quantitative map of CO adsorption by IR. J. Phys. Chem. C 2015, 119, 22570–22576.CrossRefGoogle Scholar
  25. [25]
    Henninger, S. K.; Habib, H. A.; Janiak, C. MOFs as adsorbents for low temperature heating and cooling applications. J. Am. Chem. Soc. 2009, 131, 2776–2777.CrossRefGoogle Scholar
  26. [26]
    Jasuja, H.; Zang, J.; Sholl, D. S.; Walton, K. S. Rational tuning of water vapor and CO2 adsorption in highly stable Zr-based MOFs. J. Phys. Chem. C 2012, 116, 23526–23532.CrossRefGoogle Scholar
  27. [27]
    An, J.; Shade, C. M.; Chengelis-Czegan, D. A.; Petoud, S; Rosi, N. L. Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J. Am. Chem. Soc. 2011, 133, 1220–1223.CrossRefGoogle Scholar
  28. [28]
    Peng, Y.; Srinivas, G.; Wilmer, C. E.; Eryazici, I.; Snurr, R. Q.; Hupp, J. T.; Yildirim, T.; Farha, O. K. Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal–organic framework NU-111. Chem. Commun. 2013, 49, 2992–2994.CrossRefGoogle Scholar
  29. [29]
    Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S. Q.; Space, B.; Wojtas, L. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013, 495, 80–84.CrossRefGoogle Scholar
  30. [30]
    Jin, Y. H.; Voss, B. A.; Jin, A.; Long, H.; Noble, R. D.; Zhang, W. Highly CO2-selective organic molecular cages: What determines the CO2 selectivity. J. Am. Chem. Soc. 2011, 133, 6650–6658.CrossRefGoogle Scholar
  31. [31]
    Hao, G. P.; Li, W. C.; Qian, D.; Lu, A. H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 2010, 22, 853–857.CrossRefGoogle Scholar
  32. [32]
    Sevilla, M.; Valle-Vigón, P.; Fuertes, A. B. N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 2011, 21, 2781–2787.CrossRefGoogle Scholar
  33. [33]
    Li, X. F.; Xue, Q. Z.; He, D. L.; Zhu, L.; Du, Y. G.; Xing, W.; Zhang, T. Sulfur–nitrogen codoped graphite slit-pore for enhancing selective carbon dioxide adsorption: Insights from molecular simulations. ACS Sustainable Chem. Eng. 2017, 5, 8815–8823.CrossRefGoogle Scholar
  34. [34]
    Li, X. F.; Zhu, L.; Xue, Q. Z.; Chang, X.; Ling, C. C.; Xing, W. Superior selective CO2 adsorption of C3N pores: GCMC and DFT simulations. ACS Appl. Mater. Interfaces 2017, 9, 31161–31169.CrossRefGoogle Scholar
  35. [35]
    Li, X. F.; Guo, T. C.; Zhu, L.; Ling, C. C.; Xue, Q. Z.; Xing, W. Charge-modulated CO2 capture of C3N nanosheet: Insights from DFT calculations. Chem. Eng. J. 2018, 338, 92–98.CrossRefGoogle Scholar
  36. [36]
    Zhao, Y. F.; Liu, X.; Yao, K. X.; Zhao, L.; Han, Y. Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon. Chem. Mater. 2012, 24, 4725–4734.CrossRefGoogle Scholar
  37. [37]
    Patel, H. A.; Je, S. H.; Park, J.; Chen, D. P.; Jung, Y.; Yavuz, C. T.; Coskun, A. Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nat. Commun. 2013, 4, 1357.CrossRefGoogle Scholar
  38. [38]
    Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.CrossRefGoogle Scholar
  39. [39]
    Gong, Y. J.; Shi, G.; Zhang, Z. H.; Zhou, W.; Jung, J.; Gao, W. L.; Ma, L. L.; Yang, Y.; Yang, S. B.; You, G. et al. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat. Commun. 2014, 5, 3193.CrossRefGoogle Scholar
  40. [40]
    Liu, J. J.; Kutty, R. G.; Zheng, Q. S.; Eswariah, V.; Sreejith, S.; Liu, Z. Hexagonal boron nitride nanosheets as high-performance binder-free fire-resistant wood coatings. Small 2017, 13, 1602456.CrossRefGoogle Scholar
  41. [41]
    Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.CrossRefGoogle Scholar
  42. [42]
    Song, Y. X.; Li, B.; Yang, S. W.; Ding, G. Q.; Zhang, C. R.; Xie, X. M. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition. Sci. Rep. 2015, 5, 10337.CrossRefGoogle Scholar
  43. [43]
    Liu, F.; Mo, X. S.; Gan, H. B.; Guo, T. Y.; Wang, X. B.; Chen, B.; Chen, J.; Deng, S. Z.; Xu, N. S.; Sekiguchi, T. et al. Cheap, gram-scale fabrication of BN nanosheets via substitution reaction of graphite powders and their use for mechanical reinforcement of polymers. Sci. Rep. 2014, 4, 4211.CrossRefGoogle Scholar
  44. [44]
    Rousseas, M.; Goldstein, A. P.; Mickelson, W.; Worsley, M. A.; Woo, L.; Zettl, A. Synthesis of highly crystalline sp2- bonded boron nitride aerogels. ACS Nano 2013, 7, 8540–8546.CrossRefGoogle Scholar
  45. [45]
    Hinds, B. J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L. G. Aligned multiwalled carbon nanotube membranes. Science 2004, 303, 62–65.CrossRefGoogle Scholar
  46. [46]
    Suk, M. E.; Raghunathan, A. V.; Aluru, N. R. Fast reverse osmosis using boron nitride and carbon nanotubes. Appl. Phys. Lett. 2008, 92, 133120.CrossRefGoogle Scholar
  47. [47]
    Vinod, S.; Tiwary, C. S.; da Silva, A. P. A.; Taha-Tijerina, J.; Ozden, S.; Chipara, A. C.; Vajtai, R.; Galvao, D. S.; Narayanan, T. N.; Ajayan, P. M. Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers. Nat. Commun. 2014, 5, 4541.CrossRefGoogle Scholar
  48. [48]
    Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.CrossRefGoogle Scholar
  49. [49]
    Marom, N.; Bernstein, J.; Garel, J.; Tkatchenko, A.; Joselevich, E.; Kronik, L.; Hod, O. Stacking and registry effects in layered materials: The case of hexagonal boron nitride. Phys. Rev. Lett. 2010, 105, 046801.CrossRefGoogle Scholar
  50. [50]
    Raveendran, P.; Ikushima, Y.; Wallen, S. L. Polar attributes of supercritical carbon dioxide. Acc. Chem. Res. 2005, 38, 478–485.CrossRefGoogle Scholar
  51. [51]
    Morrison, M. A.; Hay, P. J. Molecular properties of N2 and CO2 as functions of nuclear geometry: Polarizabilities, quadrupole moments, and dipole moments. J. Chem. Phys. 1979, 70, 4034.CrossRefGoogle Scholar
  52. [52]
    Williams, J. H. The molecular electric quadrupole moment and solid-state architecture. Acc. Chem. Res. 1993, 26, 593–598.CrossRefGoogle Scholar
  53. [53]
    Lenel, F. V. Uber die Adsorptions warme von Edelgasen und Kohlendioxyd an Ionenkristallen. Physik. Chem. B 1933, 23, 379.Google Scholar
  54. [54]
    Orr, W. J. C. Calculations of the adsorption behaviour of argon on alkali halide crystals. Trans. Faraday Soc. 1939, 35, 1247–1265.CrossRefGoogle Scholar
  55. [55]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  56. [56]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  57. [57]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  58. [58]
    Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.CrossRefGoogle Scholar
  59. [59]
    Lee, K.; Murray, É. D.; Kong, L. Z.; Lundqvist, B. I.; Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 2010, 82, 081101.CrossRefGoogle Scholar
  60. [60]
    Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2010, 22, 022201.CrossRefGoogle Scholar
  61. [61]
    Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.CrossRefGoogle Scholar
  62. [62]
    Kim, H. Effect of van der Waals interaction on the structural and cohesive properties of black phosphorus. J. Korean Phys. Soc. 2014, 64, 547–553.CrossRefGoogle Scholar
  63. [63]
    Wu, J. B.; Hu, Z. X.; Zhang, X.; Han, W. P.; Lu, Y.; Shi, W.; Qiao, X. F.; Ijiäs, M.; Milana, S.; Ji, W. et al. Interface coupling in twisted multilayer graphene by resonant Raman spectroscopy of layer breathing modes. ACS Nano 2015, 9, 7440–7449.CrossRefGoogle Scholar
  64. [64]
    Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. A.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.CrossRefGoogle Scholar
  65. [65]
    Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.CrossRefGoogle Scholar
  66. [66]
    Hu, Z. X.; Kong, X. H.; Qiao, J. S.; Normand, B.; Ji, W. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale 2016, 8, 2740–2750.CrossRefGoogle Scholar
  67. [67]
    Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • R. Govindan Kutty
    • 1
    • 2
  • Sivaramapanicker Sreejith
    • 3
    • 4
  • Xianghua Kong
    • 5
  • Haiyong He
    • 1
    • 2
  • Hong Wang
    • 1
    • 2
  • Junhao Lin
    • 6
  • Kazu Suenaga
    • 6
  • Chwee Teck Lim
    • 3
    • 4
    • 8
  • Yanli Zhao
    • 7
    Email author
  • Wei Ji
    • 5
    Email author
  • Zheng Liu
    • 1
    • 2
    Email author
  1. 1.Center for Programmable Materials, School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Singapore School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Center for Advanced 2D Materials and Graphene Research CenterNational University of SingaporeSingaporeSingapore
  4. 4.Biomedical Institute for Global Health Research and TechnologyNational University of SingaporeSingaporeSingapore
  5. 5.Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano DevicesRenmin University of ChinaBeijingChina
  6. 6.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  7. 7.Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  8. 8.Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations