Skip to main content

Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy

Abstract

Two-dimensional (2D) materials and their heterostructures, with wafer-scale synthesis methods and fascinating properties, have attracted significant interest and triggered revolutions in corresponding device applications. However, facile methods to realize accurate, intelligent, and large-area characterizations of these 2D nanostructures are still highly desired. Herein, we report the successful application of machine-learning strategy in the optical identification of 2D nanostructures. The machine-learning optical identification (MOI) method endows optical microscopy with intelligent insight into the characteristic color information of 2D nanostructures in the optical photograph. The experimental results indicate that the MOI method enables accurate, intelligent, and large-area characterizations of graphene, molybdenum disulfide, and their heterostructures, including identifications of the thickness, existence of impurities, and even stacking order. With the convergence of artificial intelligence and nanoscience, this intelligent identification method can certainly promote fundamental research and wafer-scale device applications of 2D nanostructures.

This is a preview of subscription content, access via your institution.

References

  1. Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470.

    Article  Google Scholar 

  2. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  3. Lin, X. Y.; Su, L.; Si, Z. Z.; Zhang, Y. G.; Bournel, A.; Zhang, Y.; Klein, J. O.; Fert, A.; Zhao, W. S. Gate-driven pure spin current in graphene. Phys. Rev. Appl. 2017, 8, 034006.

    Article  Google Scholar 

  4. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    Article  Google Scholar 

  5. Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.

    Article  Google Scholar 

  6. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  Google Scholar 

  7. Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

    Article  Google Scholar 

  8. Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 2015, 15, 43–47.

    Article  Google Scholar 

  9. Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080.

    Article  Google Scholar 

  10. Lee, J. H.; Lee, E. K.; Joo, W. J.; Jang, Y.; Kim, B. S.; Lim, J. Y.; Choi, S. H.; Ahn, S. J.; Ahn, J. R.; Park, M. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286–289.

    Article  Google Scholar 

  11. Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.

    Article  Google Scholar 

  12. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

    Article  Google Scholar 

  13. Zhao, W.; Xia, B. Y.; Lin, L.; Xiao, X. Y.; Liu, P.; Lin, X. Y.; Peng, H. L.; Zhu, Y. M.; Yu, R.; Lei, P. et al. Low-energy transmission electron diffraction and imaging of large-area graphene. Sci. Adv. 2017, 3, e1603231.

    Article  Google Scholar 

  14. Zhang, Y. B.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820–823.

    Article  Google Scholar 

  15. Wastl, D. S.; Weymouth, A. J.; Giessibl, F. J. Atomically resolved graphitic surfaces in air by atomic force microscopy. ACS Nano 2014, 8, 5233–5239.

    Article  Google Scholar 

  16. Tu, Q.; Lange, B.; Parlak, Z.; Lopes, J. M. J.; Blum, V.; Zauscher, S. Quantitative subsurface atomic structure fingerprint for 2D materials and heterostructures by firstprinciples-calibrated contact-resonance atomic force microscopy. ACS Nano 2016, 10, 6491–6500.

    Article  Google Scholar 

  17. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    Article  Google Scholar 

  18. Duong, D. L.; Han, G. H.; Lee, S. M.; Gunes, F.; Kim, E. S.; Kim, S. T.; Kim, H.; Ta, Q. H.; So, K. P.; Yoon, S. J. et al. Probing graphene grain boundaries with optical microscopy. Nature 2012, 490, 235–239.

    Article  Google Scholar 

  19. Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q. H.; Zhang, H. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 2013, 7, 10344–10353.

    Article  Google Scholar 

  20. Li, W.; Moon, S.; Wojcik, M.; Xu, K. Direct optical visualization of graphene and its nanoscale defects on transparent substrates. Nano Lett. 2016, 16, 5027–5031.

    Article  Google Scholar 

  21. Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.

    Article  Google Scholar 

  22. Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.

    Article  Google Scholar 

  23. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  24. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  Google Scholar 

  25. Lee, Y.; Lee, J.; Bark, H.; Oh, I.; Ryu, G. H.; Lee, Z.; Kim, H.; Cho, J. H.; Ahn, J.; Lee, C. Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale 2014, 6, 2821–2826.

    Article  Google Scholar 

  26. Zhao, M.; Ye, Y.; Han, Y. M.; Xia, Y.; Zhu, H. Y.; Wang, S. Q.; Wang, Y.; Muller, D. A.; Zhang, X. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 2016, 11, 954–959.

    Article  Google Scholar 

  27. Alexeev, E. M.; Catanzaro, A.; Skrypka, O. V.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I.; Novoselov, K. S.; Shin, H. S. et al. Imaging of interlayer coupling in van der Waals heterostructures using a bright-field optical microscope. Nano Lett. 2017, 17, 5342–5349.

    Article  Google Scholar 

  28. Tan, Y.; Liu, X. B.; He, Z. L.; Liu, Y. R.; Zhao, M. W.; Zhang, H.; Chen, F. Tuning of interlayer coupling in largearea graphene/WSe2 van der Waals heterostructure via ion irradiation: Optical evidences and photonic applications. ACS Photonics 2017, 4, 1531–1538.

    Article  Google Scholar 

  29. Nolen, C. M.; Denina, G.; Teweldebrhan, D.; Bhanu, B.; Balandin, A. A. High-throughput large-area automated identification and quality control of graphene and few-layer graphene films. ACS Nano 2011, 5, 914–922.

    Article  Google Scholar 

  30. Maxmen, A. Deep learning sharpens views of cells and genes. Nature 2018, 553, 9–10.

    Article  Google Scholar 

  31. Christmann, A.; Steinwart, I. Support Vector Machines; Springer-Verlag: New York, 2008; pp 613.

    Google Scholar 

  32. Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 213116.

    Article  Google Scholar 

  33. Zhu, F.; Lin, X. Y.; Liu, P.; Jiang, K. L.; Wei, Y.; Wu, Y.; Wang, J. P.; Fan, S. S. Heating graphene to incandescence and the measurement of its work function by thermionic emission method. Nano Res. 2014, 7, 553–560.

    Article  Google Scholar 

  34. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  Google Scholar 

  35. Lu, Z. X.; Sun, L. F.; Xu, G. C.; Zheng, J. Y.; Zhang, Q.; Wang, J. Y.; Jiao, L. Y. Universal transfer and stacking of chemical vapor deposition grown two-dimensional atomic layers with water-soluble polymer mediator. ACS Nano 2016, 10, 5237–5242.

    Article  Google Scholar 

  36. Knittl, Z. Optics of Thin Films: An Optical Multilayer Theory; Wiley: London, 1976; pp 548.

    Google Scholar 

  37. Zhang, H.; Ma, Y. G.; Wan, Y.; Rong, X.; Xie, Z. A.; Wang, W.; Dai, L. Measuring the refractive index of highly crystalline monolayer MoS2 with high confidence. Sci. Rep. 2015, 5, 8440.

    Article  Google Scholar 

  38. Palik, E. D. Handbook of Optical Constants of Solids; Elsevier: Amsterdam, 1997.

    Google Scholar 

  39. Masubuchi, S.; Morimoto, M.; Morikawa, S.; Onodera, M.; Asakawa, Y.; Watanabe, K.; Taniguchi, T.; Machida, T. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 2018, 9, 1413.

    Article  Google Scholar 

  40. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51602013, 61602022 and 61627813), the National Basic Research Program of China (No. 2012CB932301), the International Collaboration 111 Project (No. B16001), Beijing Natural Science Foundation (No. 4162039) and funding support from Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC). The authors thank Ms. X. Y. Wang and Prof. Y. Lu for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyang Lin or Weisheng Zhao.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Si, Z., Fu, W. et al. Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy. Nano Res. 11, 6316–6324 (2018). https://doi.org/10.1007/s12274-018-2155-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2155-0

Keywords

  • machine-learning optical identification
  • two-dimensional (2D) material
  • heterostructure
  • artificial intelligence