Biomedical applications of mRNA nanomedicine

Abstract

As an attractive alternative to plasmid DNA, messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapeutics for biomedical applications. Advances in addressing the inherent shortcomings of mRNA and in the development of nanoparticle-based delivery systems have prompted the development and clinical translation of mRNA-based medicines. In this review, we discuss the chemical modification strategies of mRNA to improve its stability, minimize immune responses, and enhance translational efficacy. We also highlight recent progress in nanoparticle-based mRNA delivery. Considerable attention is given to the increasingly widespread applications of mRNA nanomedicine in the biomedical fields of vaccination, protein-replacement therapy, gene editing, and cellular reprogramming and engineering.

References

  1. [1]

    Brenner, S.; Jacob, F.; Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 1961, 190, 576–581.

    Google Scholar 

  2. [2]

    Gurdon, J. B.; Lane, C. D.; Woodland, H. R.; Marbaix, G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 1971, 233, 177–182.

    Google Scholar 

  3. [3]

    Wolff, J. A.; Malone, R. W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P. L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247, 1465–1468.

    Google Scholar 

  4. [4]

    Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279.

    Google Scholar 

  5. [5]

    Meng, Z.; O’Keeffe–Ahern, J.; Lyu, J.; Pierucci, L.; Zhou, D. Z.; Wang, W. X. A new developing class of gene delivery: Messenger RNA–based therapeutics. Biomater. Sci. 2017, 5, 2381–2392.

    Google Scholar 

  6. [6]

    Yamamoto, A.; Kormann, M.; Rosenecker, J.; Rudolph, C. Current prospects for mRNA gene delivery. Eur. J. Pharm. Biopharm. 2009, 71, 484–489.

    Google Scholar 

  7. [7]

    Ligon, T. S.; Leonhardt, C.; Rädler, J. O. Multi–level kinetic model of mRNA delivery via transfection of lipoplexes. PLoS One 2014, 9, e107148.

    Google Scholar 

  8. [8]

    Leonhardt, C.; Schwake, G.; Stögbauer, T. R.; Rappl, S.; Kuhr, J. T.; Ligon, T. S.; Rädler, J. O. Single–cell mRNA transfection studies: Delivery, kinetics and statistics by numbers. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 679–688.

    Google Scholar 

  9. [9]

    Granot, Y.; Peer, D. Delivering the right message: Challenges and opportunities in lipid nanoparticles–mediated modified mRNA therapeutics—An innate immune system standpoint. Semin. Immunol. 2017, 34, 68–77.

    Google Scholar 

  10. [10]

    Stanton, M. G.; Murphy–Benenato, K. E. Messenger RNA as a novel therapeutic approach. In RNA Therapeutics. Garner, A. L., Ed.; Springer International Publishing: Cham, 2018; pp 237–253.

    Google Scholar 

  11. [11]

    Youn, H.; Chung, J. K. Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert. Opin. Biol. Ther. 2015, 15, 1337–1348.

    Google Scholar 

  12. [12]

    Roundtree, I. A.; Evans, M. E.; Pan, T.; He, C. Dynamic RNA modifications in gene expression regulation. Cell 2017, 169, 1187–1200.

    Google Scholar 

  13. [13]

    Hajj, K. A.; Whitehead, K. A. Tools for translation: Non–viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 17056.

    Google Scholar 

  14. [14]

    Guan, S.; Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector–based delivery systems. Gene Ther. 2017, 24, 133–143.

    Google Scholar 

  15. [15]

    Li, B.; Zhang, X. F.; Dong, Y. Z. Nanoscale platforms for messenger RNA delivery. WIREs Nanomed. Nanobiotechnol. 2018, e1530.

    Google Scholar 

  16. [16]

    Jani, B.; Fuchs, R. In vitro transcription and capping of Gaussia luciferase mRNA followed by HeLa cell transfection. J. Vis. Exp. 2012, e3702.

    Google Scholar 

  17. [17]

    Kuhn, A. N.; Beiβert, T.; Simon, P.; Vallazza, B.; Buck, J.; Davies, B. P.; Tureci, O.; Sahin, U. mRNA as a versatile tool for exogenous protein expression. Curr. Gene Ther. 2012, 12, 347–361.

    Google Scholar 

  18. [18]

    Sahin, U.; Karikó, K.; Türeci, Ö. mRNA–based therapeutics— Developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780.

    Google Scholar 

  19. [19]

    Sonenberg, N.; Gingras, A. C. The mRNA 5’ cap–binding protein eIF4E and control of cell growth. Curr. Opin. Cell Biol. 1998, 10, 268–275.

    Google Scholar 

  20. [20]

    Li, Y.; Kiledjian, M. Regulation of mRNA decapping. Wiley Interdiscip. Rev. RNA 2010, 1, 253–265.

    Google Scholar 

  21. [21]

    Yuen, L.; Davison, A. J.; Moss, B. Early promoter–binding factor from vaccinia virions. Proc. Natl. Acad. Sci. USA 1987, 84, 6069–6073.

    Google Scholar 

  22. [22]

    Jemielity, J.; Kowalska, J.; Rydzik, A. M.; Darzynkiewicz, E. Synthetic mRNA cap analogues with a modified triphosphate bridge—Synthesis, applications and prospects. New J. Chem. 2010, 34, 829–844.

    Google Scholar 

  23. [23]

    De, G. E.; Preiss, T.; Hentze, M. W. Translational activation of uncapped mRNAs by the central part of human eIF4G is 5’ end–dependent. RNA 1998, 4, 828–836.

    Google Scholar 

  24. [24]

    Pasquinelli, A. E.; Dahlberg, J. E.; Lund, E. Reverse 5’ caps in RNAs made in vitro by phage RNA polymerases. RNA 1995, 1, 957–967.

    Google Scholar 

  25. [25]

    Jemielity, J.; Fowler, T.; Zuberek, J.; Stepinski, J.; Lewdorowicz, M.; Niedzwiecka, A.; Stolarski, R.; Darzynkiewicz, E.; Rhoads, R. E. Novel “anti–reverse” cap analogs with superior translational properties. RNA 2003, 9, 1108–1122.

    Google Scholar 

  26. [26]

    Grudzien–Nogalska, E.; Stepinski, J.; Jemielity, J.; Zuberek, J.; Stolarski, R.; Rhoads, R. E.; Darzynkiewicz, E. Synthesis of anti–reverse cap analogs (ARCAs) and their applications in mRNA translation and stability. Methods Enzymol. 2007, 431, 203–227.

    Google Scholar 

  27. [27]

    Kuhn, A. N.; Diken, M.; Kreiter, S.; Selmi, A.; Kowalska, J.; Jemielity, J.; Darzynkiewicz, E.; Huber, C.; Türeci, Ö.; Sahin, U. Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther. 2010, 17, 961–971.

    Google Scholar 

  28. [28]

    Kowalska, J.; Zuberek, J.; Darzynkiewicz, Z. M.; Lukaszewicz, M.; Darzynkiewicz, E.; Jemielity, J. The first examples of mRNA cap analogs bearing boranophosphate modification. Nucleic Acids Symp. Ser. 2008, 52, 289–290.

    Google Scholar 

  29. [29]

    Kowalska, J.; Wypijewska del Nogal, A.; Darzynkiewicz, Z. M.; Buck, J.; Nicola, C.; Kuhn, A. N.; Lukaszewicz, M.; Zuberek, J.; Strenkowska, M.; Ziemniak, M. et al. Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: Versatile tools for manipulation of therapeutically relevant cap–dependent processes. Nucleic Acids Res. 2014, 42, 10245–10264.

    Google Scholar 

  30. [30]

    Su, W.; Slepenkov, S.; Grudzien–Nogalska, E.; Kowalska, J.; Kulis, M.; Zuberek, J.; Lukaszewicz, M.; Darzynkiewicz, E.; Jemielity, J.; Rhoads, R. E. Translation, stability, and resistance to decapping of mRNAs containing caps substituted in the triphosphate chain with BH3, Se, and NH. RNA 2011, 17, 978–988.

    Google Scholar 

  31. [31]

    Rydzik, A. M.; Lukaszewicz, M.; Zuberek, J.; Kowalska, J.; Darzynkiewicz, Z. M.; Darzynkiewicz, E.; Jemielity, J. Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5’,5’–bridge containing methylenebis(phosphonate) modification. Org. Biomol. Chem. 2009, 7, 4763–4776.

    Google Scholar 

  32. [32]

    Strenkowska, M.; Grzela, R.; Majewski, M.; Wnek, K.; Kowalska, J.; Lukaszewicz, M.; Zuberek, J.; Darzynkiewicz, E.; Kuhn, A. N.; Sahin, U. et al. Cap analogs modified with 1,2–dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Res. 2016, 44, 9578–9590.

    Google Scholar 

  33. [33]

    Rydzik, A. M.; Warminski, M.; Sikorski, P. J.; Baranowski, M. R.; Walczak, S.; Kowalska, J.; Zuberek, J.; Lukaszewicz, M.; Nowak, E.; Claridge, W. et al. mRNA cap analogues substituted in the tetraphosphate chain with CX2: Identification of O–to–CCl2 as the first bridging modification that confers resistance to decapping without impairing translation. Nucleic Acids Res. 2017, 45, 8661–8675.

    Google Scholar 

  34. [34]

    Goldstrohm, A. C.; Wickens, M. Multifunctional deadenylase complexes diversify mRNA control. Nat. Rev. Mol. Cell Biol. 2008, 9, 337–344.

    Google Scholar 

  35. [35]

    Steitz, J.; Britten, C. M.; Wölfel, T.; Tüting, T. Effective induction of anti–melanoma immunity following genetic vaccination with synthetic mRNA coding for the fusion protein EGFP.TRP2. Cancer Immunol. Immunother. 2006, 55, 246–253.

    Google Scholar 

  36. [36]

    Martin, G.; Keller, W. Tailing and 3’–end labeling of RNA with yeast poly(A) polymerase and various nucleotides. RNA 1998, 4, 226–230.

    Google Scholar 

  37. [37]

    Körner, C. G.; Wahle, E. Poly(A) tail shortening by a Mammalian poly(A)–specific 3’–exoribonuclease. J. Biol. Chem. 1997, 272, 10448–10456.

    Google Scholar 

  38. [38]

    Holtkamp, S.; Kreiter, S.; Selmi, A.; Simon, P.; Koslowski, M.; Huber, C.; Türeci, Ö.; Sahin, U. Modification of antigenencoding RNA increases stability, translational efficacy, and T–cell stimulatory capacity of dendritic cells. Blood 2006, 108, 4009–4017.

    Google Scholar 

  39. [39]

    Eckmann, C. R.; Rammelt, C.; Wahle, E. Control of poly(A) tail length. Wiley Interdiscip. Rev. RNA 2011, 2, 348–361.

    Google Scholar 

  40. [40]

    Weill, L.; Belloc, E.; Bava, F. A.; Méndez, R. Translational control by changes in poly(A) tail length: Recycling mRNAs. Nat. Struct. Mol. Biol. 2012, 19, 577–585.

    Google Scholar 

  41. [41]

    Peng, J.; Schoenberg, D. R. mRNA with a < 20–nt poly(A) tail imparted by the poly(A)–limiting element is translated as efficiently in vivo as long poly(A) mRNA. RNA 2005, 11, 1131–1140.

    Google Scholar 

  42. [42]

    Mockey, M.; Gonçalves, C.; Dupuy, F. P.; Lemoine, F. M.; Pichon, C.; Midoux, P. mRNA transfection of dendritic cells: Synergistic effect of ARCA mRNA capping with poly(A) chains in cis and in trans for a high protein expression level. Biochem. Biophys. Res. Commun. 2006, 340, 1062–1068.

    Google Scholar 

  43. [43]

    Grier, A. E.; Burleigh, S.; Sahni, J.; Clough, C. A.; Cardot, V.; Choe, D. C.; Krutein, M. C.; Rawlings, D. J.; Jensen, M. C.; Scharenberg, A. M. et al. pEVL: A linear plasmid for generating mRNA IVT templates with extended encoded poly(A) sequences. Mol. Ther. Nucleic Acids 2016, 5, e306.

    Google Scholar 

  44. [44]

    Rabinovich, P. M.; Komarovskaya, M. E.; Ye, Z. J.; Imai, C.; Campana, D.; Bahceci, E.; Weissman, S. M. Synthetic messenger RNA as a tool for gene therapy. Hum. Gene Ther. 2006, 17, 1027–1035.

    Google Scholar 

  45. [45]

    Mignone, F.; Gissi, C.; Liuni, S.; Pesole, G. Untranslated regions of mRNAs. Genome Biol. 2002, 3, reviews0004.1–reviews0004.10.

    Google Scholar 

  46. [46]

    Gebauer, F.; Hentze, M. W. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 2004, 5, 827–835.

    Google Scholar 

  47. [47]

    Hinnebusch, A. G.; Ivanov, I. P.; Sonenberg, N. Translational control by 5’–untranslated regions of eukaryotic mRNAs. Science 2016, 352, 1413–1416.

    Google Scholar 

  48. [48]

    Leppek, K.; Das, R.; Barna, M. Functional 5’ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 2018, 19, 158–174.

    Google Scholar 

  49. [49]

    Mayr, C. Regulation by 3’–untranslated regions. Annu. Rev. Genet. 2017, 51, 171–194.

    Google Scholar 

  50. [50]

    Komar, A. A.; Hatzoglou, M. Cellular IRES–mediated translation. Cell Cycle 2011, 10, 229–240.

    Google Scholar 

  51. [51]

    Meyer, K. D.; Patil, D. P.; Zhou, J.; Zinoviev, A.; Skabkin, M. A.; Elemento, O.; Pestova, T. V.; Qian, S. B.; Jaffrey, S. R. 5’ UTR m6A promotes cap–independent translation. Cell 2015, 163, 999–1010.

    Google Scholar 

  52. [52]

    Kozak, M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 1987, 196, 947–950.

    Google Scholar 

  53. [53]

    Matoulkova, E.; Michalova, E.; Vojtesek, B.; Hrstka, R. The role of the 3’ untranslated region in post–transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012, 9, 563–576.

    Google Scholar 

  54. [54]

    Ross, J.; Sullivan, T. D. Half–lives of beta and gamma globin messenger RNAs and of protein synthetic capacity in cultured human reticulocytes. Blood 1985, 66, 1149–1154.

    Google Scholar 

  55. [55]

    Berkovits, B. D.; Mayr, C. Alternative 3’ UTRs act as scaffolds to regulate membrane protein localization. Nature 2015, 522, 363–367.

    Google Scholar 

  56. [56]

    Plotkin, J. B.; Kudla, G. Synonymous but not the same: The causes and consequences of codon bias. Nat. Rev. Genet. 2011, 12, 32–42.

    Google Scholar 

  57. [57]

    Novoa, E. M.; Ribas de Pouplana, L. Speeding with control: Codon usage, tRNAs, and ribosomes. Trends Genet. 2012, 28, 574–581.

    Google Scholar 

  58. [58]

    Al–Saif, M.; Khabar, K. S. A. UU/UA dinucleotide frequency reduction in coding regions results in increased mRNA stability and protein expression. Mol. Ther. 2012, 20, 954–959.

    Google Scholar 

  59. [59]

    Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004, 22, 346–353.

    Google Scholar 

  60. [60]

    Kudla, G.; Murray, A. W.; Tollervey, D.; Plotkin, J. B. Coding–sequence determinants of gene expression in Escherichia coli. Science 2009, 324, 255–258.

    Google Scholar 

  61. [61]

    Knights, A. J.; Nuber, N.; Thomson, C. W.; de la Rosa, O.; Jäger, E.; Tiercy, J. M.; van den Broek, M.; Pascolo, S.; Knuth, A.; Zippelius, A. Modified tumour antigen–encoding mRNA facilitates the analysis of naturally occurring and vaccine–induced CD4 and CD8 T cells in cancer patients. Cancer Immunol. Immunother. 2009, 58, 325–338.

    Google Scholar 

  62. [62]

    Benteyn, D.; Anguille, S.; van Lint, S.; Heirman, C.; Van Nuffel, A. M. T.; Corthals, J.; Ochsenreither, S.; Waelput, W.; van Beneden, K.; Breckpot, K. et al. Design of an optimized Wilms’ Tumor 1 (WT1) mRNA construct for enhanced WT1 expression and improved immunogenicity in vitro and in vivo. Mol. Ther. Nucleic Acids 2013, 2, e134.

    Google Scholar 

  63. [63]

    Mauro, V. P.; Chappell, S. A. A critical analysis of codon optimization in human therapeutics. Trends Mol. Med. 2014, 20, 604–613.

    Google Scholar 

  64. [64]

    Karikó, K.; Ni, H. P.; Capodici, J.; Lamphier, M.; Weissman, D. mRNA is an endogenous ligand for toll–like receptor 3. J. Biol. Chem. 2004, 279, 12542–12550.

    Google Scholar 

  65. [65]

    Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species–specific recognition of single–stranded RNA via toll–like receptor 7 and 8. Science 2004, 303, 1526–1529.

    Google Scholar 

  66. [66]

    Goubau, D.; Schlee, M.; Deddouche, S.; Pruijssers, A. J.; Zillinger, T.; Goldeck, M.; Schuberth, C.; van den Veen, A. G.; Fujimura, T.; Rehwinkel, J. et al. Antiviral immunity via RIG–I–mediated recognition of RNA bearing 5’–diphosphates. Nature 2014, 514, 372–375.

    Google Scholar 

  67. [67]

    Pollard, C.; De Koker, S.; Saelens, X.; Vanham, G.; Grooten, J. Challenges and advances towards the rational design of mRNA vaccines. Trends Mol. Med. 2013, 19, 705–713.

    Google Scholar 

  68. [68]

    Kallen, K. J.; Theβ, A. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide–based vaccines and drugs. Ther. Adv. Vaccines 2014, 2, 10–31.

    Google Scholar 

  69. [69]

    Bate, A.; Juniper, J.; Lawton, A. M.; Thwaites, R. M. A. Designing and incorporating a real world data approach to international drug development and use: What the UK offers. Drug Discov. Today 2016, 21, 400–405.

    Google Scholar 

  70. [70]

    Karikó, K.; Muramatsu, H.; Welsh, F. A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 2008, 16, 1833–1840.

    Google Scholar 

  71. [71]

    Anderson, B. R.; Muramatsu, H.; Nallagatla, S. R.; Bevilacqua, P. C.; Sansing, L. H.; Weissman, D.; Karikó, K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010, 38, 5884–5892.

    Google Scholar 

  72. [72]

    Anderson, B. R.; Muramatsu, H.; Jha, B. K.; Silverman, R. H.; Weissman, D.; Karikó, K. Nucleoside modifications in RNA limit activation of 2’–5’–oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 2011, 39, 9329–9338.

    Google Scholar 

  73. [73]

    Li, B.; Zhao, W. Y.; Luo, X.; Zhang, X. F.; Li, C. L.; Zeng, C. X.; Dong, Y. Z. Engineering CRISPR–Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat. Biomed. Eng. 2017, 1, 0066.

    Google Scholar 

  74. [74]

    Kwon, H.; Kim, M.; Seo, Y.; Moon, Y. S.; Lee, H. J.; Lee, K.; Lee, H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 2018, 156, 172–193.

    Google Scholar 

  75. [75]

    Li, B.; Luo, X.; Dong, Y. Z. Effects of chemically modified messenger RNA on protein expression. Bioconjugute Chem. 2016, 27, 849–853.

    Google Scholar 

  76. [76]

    Zangi, L.; Lui, K. O.; Von Gise, A.; Ma, Q.; Ebina, W.; Ptaszek, L. M.; Später, D.; Xu, H. S.; Tabebordbar, M.; Gorbatov, R. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 2013, 31, 898–907.

    Google Scholar 

  77. [77]

    Wroblewska, L.; Kitada, T.; Endo, K.; Siciliano, V.; Stillo, B.; Saito, H.; Weiss, R. Mammalian synthetic circuits with RNA binding proteins for RNA–only delivery. Nat. Biotechnol. 2015, 33, 839–841.

    Google Scholar 

  78. [78]

    Kormann, M. S.; Hasenpusch, G.; Aneja, M. K.; Nica, G.; Flemmer, A. W.; Herber–Jonat, S.; Huppmann, M.; Mays, L. E.; Illenyi, M.; Schams, A. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 2011, 29, 154–157.

    Google Scholar 

  79. [79]

    Andries, O.; Mc Cafferty, S.; De Smedt, S. C.; Weiss, R.; Sanders, N. N.; Kitada, T. N1–methylpseudouridineincorporated mRNA outperforms pseudouridine–incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release. 2015, 217, 337–344.

    Google Scholar 

  80. [80]

    Uchida, S.; Kataoka, K.; Itaka, K. Screening of mRNA Chemical modification to maximize protein expression with reduced immunogenicity. Pharmaceutics 2015, 7, 137–151.

    Google Scholar 

  81. [81]

    Kotterman, M. A.; Schaffer, D. V. Engineering adenoassociated viruses for clinical gene therapy. Nat. Rev. Genet. 2014, 15, 445–451.

    Google Scholar 

  82. [82]

    Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non–viral vectors for genebased therapy. Nat. Rev. Genet. 2014, 15, 541–555.

    Google Scholar 

  83. [83]

    Bessis, N.; GarciaCozar, F. J.; Boissier, M. C. Immune responses to gene therapy vectors: Influence on vector function and effector mechanisms. Gene Ther. 2004, 11, S10–S17.

    Google Scholar 

  84. [84]

    Thomas, C. E.; Ehrhardt, A.; Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003, 4, 346–358.

    Google Scholar 

  85. [85]

    Bouard, D.; Alazard–Dany, N.; Cosset, F. L. Viral vectors: From virology to transgene expression. Br. J. Pharmacol. 2009, 157, 153–165.

    Google Scholar 

  86. [86]

    Malone, R. W.; Felgner, P. L.; Verma, I. M. Cationic liposome–mediated RNA transfection. Proc. Natl. Acad. Sci. USA 1989, 86, 6077–6081.

    Google Scholar 

  87. [87]

    Zohra, F. T.; Chowdhury, E. H.; Akaike, T. High performance mRNA transfection through carbonate apatite–cationic liposome conjugates. Biomaterials 2009, 30, 4006–4013.

    Google Scholar 

  88. [88]

    Sayour, E. J.; De Leon, G.; Pham, C.; Grippin, A.; Kemeny, H.; Chua, J.; Huang, J. P.; Sampson, J. H.; Sanchez–Perez, L.; Flores, C. et al. Systemic activation of antigen–presenting cells via RNA–loaded nanoparticles. Oncoimmunology 2017, 6, e1256527.

    Google Scholar 

  89. [89]

    Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015, 15, 7300–7306.

    Google Scholar 

  90. [90]

    Mandal, P. K.; Rossi, D. J. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat. Protoc. 2013, 8, 568–582.

    Google Scholar 

  91. [91]

    Kanasty, R.; Dorkin, J. R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967–977.

    Google Scholar 

  92. [92]

    Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015, 15, 7300–7306.

    Google Scholar 

  93. [93]

    Li, B.; Luo, X.; Deng, B. B.; Wang, J. F.; McComb, D. W.; Shi, Y. M.; Gaensler, K. M. L.; Tan, X.; Dunn, A. L.; Kerlin, B. A. et al. An orthogonal array optimization of lipid–like nanoparticles for mRNA delivery in vivo. Nano Lett. 2015, 15, 8099–8107.

    Google Scholar 

  94. [94]

    Luo, X.; Li, B.; Zhang, X.; Zhao, W.; Bratasz, A.; Deng, B.; McComb, D. W.; Dong, Y. Dual–functional lipid–like nanoparticles for delivery of mRNA and MRI contrast agents. Nanoscale 2017, 9, 1575–1579.

    Google Scholar 

  95. [95]

    Fenton, O. S.; Kauffman, K. J.; McClellan, R. L.; Appel, E. A.; Dorkin, J. R.; Tibbitt, M. W.; Heartlein, M. W.; DeRosa, F.; Langer, R.; Anderson, D. G. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv. Mater. 2016, 28, 2939–2943.

    Google Scholar 

  96. [96]

    Patel, S.; Ashwanikumar, N.; Robinson, E.; DuRoss, A.; Sun, C.; Murphy–Benenato, K. E.; Mihai, C.; Almarsson, O.; Sahay, G. Boosting intracellular delivery of lipid nanoparticleencapsulated mRNA. Nano Lett. 2017, 17, 5711–5718.

    Google Scholar 

  97. [97]

    Bissig, C.; Johnson, S.; Gruenberg, J. Chapter 2–Studying lipids involved in the endosomal pathway. In Methods Cell Biol. 2012, 108, 19–46.

    Google Scholar 

  98. [98]

    Zatsepin, T.; Kotelevtsev, Y.; Koteliansky, V. Lipid nanoparticles for targeted siRNA delivery–going from bench to bedside. Int. J. Nanomed. 2016, 11, 3077–3086.

    Google Scholar 

  99. [99]

    Cullis, P. R.; Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 2017, 25, 1467–1475.

    Google Scholar 

  100. [100]

    Cho Yong, W.; Kim, J. D.; Park, K. Polycation gene delivery systems: Escape from endosomes to cytosol. J. Pharm. Pharmacol. 2003, 55, 721–734.

    Google Scholar 

  101. [101]

    Zhu, J.; Qiao, M. X.; Wang, Q.; Ye, Y. Q.; Ba, S.; Ma, J. J.; Hu, H. Y.; Zhao, X. L.; Chen, D. W. Dual–responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA. Biomaterials 2018, 162, 47–59.

    Google Scholar 

  102. [102]

    Zhang, M. M.; Xiong, Q. Q.; Wang, Y. S.; Zhang, Z. B.; Shen, W.; Liu, L. R.; Wang, Q. Y.; Zhang, Q. Q. A welldefined coil–comb polycationic brush with “star polymers” as side chains for gene delivery. Polym. Chem. 2014, 5, 4670–4678.

    Google Scholar 

  103. [103]

    Li, M.; Zhao, M. N.; Fu, Y.; Li, Y.; Gong, T.; Zhang, Z. R.; Sun, X. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra–and paracellular pathways. J. Control. Release. 2016, 228, 9–19.

    Google Scholar 

  104. [104]

    Chiper, M.; Tounsi, N.; Kole, R.; Kichler, A.; Zuber, G. Self–aggregating 1.8 kDa polyethylenimines with dissolution switch at endosomal acidic pH are delivery carriers for plasmid DNA, mRNA, siRNA and exon–skipping oligonucleotides. J. Control. Release. 2017, 246, 60–70.

    Google Scholar 

  105. [105]

    Little, S. R.; Lynn, D. M.; Ge, Q.; Anderson, D. G.; Puram, S. V.; Chen, J. Z.; Eisen, H. N.; Langer, R. Poly–β amino ester–containing microparticles enhance the activity of nonviral genetic vaccines. Proc. Natl. Acad. Sci. USA 2004, 101, 9534–9539.

    Google Scholar 

  106. [106]

    Wang, H. M.; Wan, G. Y.; Liu, Y. Y.; Chen, B. W.; Chen, H. L.; Zhang, S. P.; Wang, D.; Xiong, Q. Q.; Zhang, N.; Wang, Y. S. Dual–responsive nanoparticles based on oxidized pullulan and a disulfide–containing poly(β–amino ester) for efficient delivery of genes and chemotherapeutic agents targeting hepatoma. Polym. Chem. 2016, 7, 6340–6353.

    Google Scholar 

  107. [107]

    Eltoukhy, A. A.; Chen, D. L.; Alabi, C. A.; Langer, R.; Anderson, D. G. Degradable terpolymers with alkyl side chains demonstrate enhanced gene delivery potency and nanoparticle stability. Adv. Mater. 2013, 25, 1487–1493.

    Google Scholar 

  108. [108]

    Kaczmarek, J. C.; Patel, A. K.; Kauffman, K. J.; Fenton, O. S.; Webber, M. J.; Heartlein, M. W.; DeRosa, F.; Anderson, D. G. Polymer–lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew. Chem., Int. Ed. 2016, 55, 13808–13812.

    Google Scholar 

  109. [109]

    Xu, F. J.; Yang, W. T. Polymer vectors via controlled/living radical polymerization for gene delivery. Prog. Polym. Sci. 2011, 36, 1099–1131.

    Google Scholar 

  110. [110]

    Uzgün, S.; Nica, G.; Pfeifer, C.; Bosinco, M.; Michaelis, K.; Lutz, J. F.; Schneider, M.; Rosenecker, J.; Rudolph, C. PEGylation improves nanoparticle formation and transfection efficiency of messenger RNA. Pharm. Res. 2011, 28, 2223–2232.

    Google Scholar 

  111. [111]

    Cheng, C.; Convertine, A. J.; Stayton, P. S.; Bryers, J. D. Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials 2012, 33, 6868–6876.

    Google Scholar 

  112. [112]

    Nuhn, L.; Kaps, L.; Diken, M.; Schuppan, D.; Zentel, R. Reductive decationizable block copolymers for stimuliresponsive mRNA delivery. Macromol. Rapid Commun. 2016, 37, 924–933.

    Google Scholar 

  113. [113]

    Chahal, J. S.; Khan, O. F.; Cooper, C. L.; McPartlan, J. S.; Tsosie, J. K.; Tilley, L. D.; Sidik, S. M.; Lourido, S.; Langer, R.; Bavari, S. et al. Dendrimer–RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl. Acad. Sci. USA 2016, 113, E4133–E4142.

    Google Scholar 

  114. [114]

    Buschmann, M. D.; Merzouki, A.; Lavertu, M.; Thibault, M.; Jean, M.; Darras, V. Chitosans for delivery of nucleic acids. Adv. Drug Delivery Rev. 2013, 65, 1234–1270.

    Google Scholar 

  115. [115]

    Lallana, E.; Rios de la Rosa, J. M.; Tirella, A.; Pelliccia, M.; Gennari, A.; Stratford, I. J.; Puri, S.; Ashford, M.; Tirelli, N. Chitosan/hyaluronic acid nanoparticles: Rational design revisited for RNA delivery. Mol. Pharmaceutics 2017, 14, 2422–2436.

    Google Scholar 

  116. [116]

    Amos, H. Protamine enhancement of RNA uptake by cultured chick cells. Biochem. Biophys. Res. Commun. 1961, 5, 1–4.

    Google Scholar 

  117. [117]

    Scheel, B.; Teufel, R.; Probst, J.; Carralot, J. P.; Geginat, J.; Radsak, M.; Jarrossay, D.; Wagner, H.; Jung, G.; Rammensee, H. G. et al. Toll–like receptor–dependent activation of several human blood cell types by protaminecondensed mRNA. Eur. J. Immunol. 2005, 35, 1557–1566.

    Google Scholar 

  118. [118]

    Rauch, S.; Lutz, J.; Kowalczyk, A.; Schlake, T.; Heidenreich, R. RNActive® technology: Generation and testing of stable and immunogenic mRNA vaccines. In: RNA Vaccines. Kramps, T.; Elbers, K., Eds.; Humana Press: New York, NY, 2017; pp. 89–107.

  119. [119]

    Kübler, H.; Scheel, B.; Gnad–Vogt, U.; Miller, K.; Schultze–Seemann, W.; Dorp, F. V.; Parmiani, G.; Hampel, C.; Wedel, S.; Trojan, L. et al. Self–adjuvanted mRNA vaccination in advanced prostate cancer patients: A first–in–man phase I/IIa study. J. Immunother. Cancer 2015, 3, 26.

    Google Scholar 

  120. [120]

    Chen, Q. X.; Qi, R. G.; Chen, X. Y.; Yang, X.; Wu, S. D.; Xiao, H. H.; Dong, W. F. A targeted and stable polymeric nanoformulation enhances systemic delivery of mRNA to tumors. Mol. Ther. 2017, 25, 92–101.

    Google Scholar 

  121. [121]

    Oldenhuis Nathan, J.; Eldredge Alexander, C.; Burts Alan, O.; Ryu Keun, A.; Chung, J.; Johnson Mark, E.; Guan, Z. B. Biodegradable dendronized polymers for efficient mRNA delivery. ChemistrySelect 2016, 1, 4413–4417.

    Google Scholar 

  122. [122]

    Shi, J. J.; Xiao, Z. Y.; Votruba Alexander, R.; Vilos, C.; Farokhzad Omid, C. Differentially charged hollow core/shell lipid–polymer–lipid hybrid nanoparticles for small interfering RNA delivery. Angew. Chem., Int. Ed. 2011, 50, 7027–7031.

    Google Scholar 

  123. [123]

    Dehaini, D.; Fang, R. H.; Luk, B. T.; Pang, Z. Q.; Hu, C. M. J.; Kroll, A. V.; Yu, C. L.; Gao, W. W.; Zhang, L. F. Ultra–small lipid–polymer hybrid nanoparticles for tumorpenetrating drug delivery. Nanoscale 2016, 8, 14411–14419.

    Google Scholar 

  124. [124]

    Fang, R. H.; Jiang, Y.; Fang, J. C.; Zhang, L. F. Cell membrane–derived nanomaterials for biomedical applications. Biomaterials 2017, 128, 69–83.

    Google Scholar 

  125. [125]

    Xu, X. D.; Wu, J.; Liu, Y. L.; Saw, P. E.; Tao, W.; Yu, M.; Zope, H.; Si, M.; Victorious, A.; Rasmussen, J. et al. Multifunctional envelope–type siRNA delivery nanoparticle platform for prostate cancer therapy. ACS Nano 2017, 11, 2618–2627.

    Google Scholar 

  126. [126]

    Xu, X. D.; Saw, P. E.; Tao, W.; Li, Y. J.; Ji, X. Y.; Yu, M.; Mahmoudi, M.; Rasmussen, J.; Ayyash, D.; Zhou, Y. X. et al. Tumor microenvironment–responsive multistaged nanoplatform for systemic RNAi and cancer therapy. Nano Lett. 2017, 17, 4427–4435.

    Google Scholar 

  127. [127]

    Islam, M. A.; Xu, Y.; Zope, H.; Cao, W.; Mahmoudi, M.; Langer, R.; Kantoff, P. W.; Shi, J.; Zetter, B. R.; Farokhzad, O. C. Restoration of tumor suppression in vivo by systemic delivery of chemically–modified PTEN mRNA nanoparticles. J. Clin. Oncol. 2017, 35, 11582–11582.

    Google Scholar 

  128. [128]

    Wang, Y. H.; Su, H. H.; Yang, Y.; Hu, Y. X.; Zhang, L.; Blancafort, P.; Huang, L. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol. Ther. 2013, 21, 358–367.

    Google Scholar 

  129. [129]

    Su, X. F.; Fricke, J.; Kavanagh, D. G.; Irvine, D. J. In vitro and in vivo mRNA delivery using lipid–enveloped pHresponsive polymer nanoparticles. Mol. Pharmaceutics 2011, 8, 774–787.

    Google Scholar 

  130. [130]

    Liang, P.; Liu, C. J.; Zhuo, R. X.; Cheng, S. X. Selfassembled inorganic/organic hybrid nanoparticles with multi–functionalized surfaces for active targeting drug delivery. J. Mater. Chem. B 2013, 1, 4243–4250.

    Google Scholar 

  131. [131]

    Zohra, F. T.; Chowdhury, E. H.; Nagaoka, M.; Akaike, T. Drastic effect of nanoapatite particles on liposome–mediated mRNA delivery to mammalian cells. Anal. Biochem. 2005, 345, 164–166.

    Google Scholar 

  132. [132]

    Zohra, F. T.; Maitani, Y.; Akaike, T. mRNA delivery through fibronectin associated liposome–apatite particles: A new approach for enhanced mRNA transfection to mammalian cell. Biol. Pharm. Bull. 2012, 35, 111–115.

    Google Scholar 

  133. [133]

    Haque, S. T.; Chowdhury, E. H. Recent progress in delivery of therapeutic and imaging agents utilizing organicinorganic hybrid nanoparticles. Curr. Drug Deliv. 2018, 15, 485–496.

    Google Scholar 

  134. [134]

    Alexander, C. M.; Hamner, K. L.; Maye, M. M.; Dabrowiak, J. C. Multifunctional DNA–gold nanoparticles for targeted doxorubicin delivery. Bioconjugute Chem. 2014, 25, 1261–1271.

    Google Scholar 

  135. [135]

    Ryou, S. M.; Kim, S.; Jang, H. H.; Kim, J. H.; Yeom, J. H.; Eom, M. S.; Bae, J.; Han, M. S.; Lee, K. Delivery of shRNA using gold nanoparticle–DNA oligonucleotide conjugates as a universal carrier. Biochem. Biophys. Res. Commun. 2010, 398, 542–546.

    Google Scholar 

  136. [136]

    Song, L.; Guo, Y.; Roebuck, D.; Chen, C.; Yang, M.; Yang, Z. Q.; Sreedharan, S.; Glover, C.; Thomas, J. A.; Liu, D. S. et al. Terminal PEGylated DNA–gold nanoparticle conjugates offering high resistance to nuclease degradation and efficient intracellular delivery of DNA binding agents. ACS Appl. Mater. Interfaces 2015, 7, 18707–18716.

    Google Scholar 

  137. [137]

    Yeom, J. H.; Ryou, S. M.; Won, M.; Park, M.; Bae, J.; Lee, K. Inhibition of xenograft tumor growth by gold nanoparticle–DNA oligonucleotide conjugates–assisted delivery of Bax mRNA. PLoS One 2013, 8, e75369.

    Google Scholar 

  138. [138]

    Park, S.; Hamad–Schifferli, K. Enhancement of in vitro translation by gold nanoparticle—DNA conjugates. ACS Nano 2010, 4, 2555–2560.

    Google Scholar 

  139. [139]

    Chan, K. P.; Gao, Y.; Goh, J. X.; Susanti, D.; Yeo, E. L. L.; Chao, S. H.; Kah, J. C. Y. Exploiting the protein corona from cell lysate on DNA functionalized gold nanoparticles for enhanced mRNA translation. ACS Appl. Mater. Interfaces 2017, 9, 10408–10417.

    Google Scholar 

  140. [140]

    Martinon, F.; Krishnan, S.; Lenzen, G.; Magné, R.; Gomard, E.; Guillet, J. G.; Lévy, J. P.; Meulien, P. Induction of virus–specific cytotoxic T lymphocytes in vivo by liposome–entrapped mRNA. Eur. J. Immunol. 1993, 23, 1719–1722.

    Google Scholar 

  141. [141]

    Perri, S.; Greer, C. E.; Thudium, K.; Doe, B.; Legg, H.; Liu, H.; Romero, R. E.; Tang, Z. Q.; Bin, Q.; Dubensky Jr, T. W. et al. An alphavirus replicon particle chimera derived from Venezuelan equine encephalitis and sindbis viruses is a potent gene–based vaccine delivery vector. J. Virol. 2003, 77, 10394–10403.

    Google Scholar 

  142. [142]

    Geall, A. J.; Verma, A.; Otten, G. R.; Shaw, C. A.; Hekele, A.; Banerjee, K.; Cu, Y.; Beard, C. W.; Brito, L. A.; Krucker, T. et al. Nonviral delivery of self–amplifying RNA vaccines. Proc. Natl. Acad. Sci. USA 2012, 109, 14604–14609.

    Google Scholar 

  143. [143]

    Armin, H.; Sylvie, B.; Jacob, A.; Gibson, D. G.; Giuseppe, P.; Brito, L. A.; Otten, G. R.; Michela, B.; Scilla, B.; Alessandra, B. et al. Rapidly produced SAM®vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2013, 2, e52.

    Google Scholar 

  144. [144]

    Brazzoli, M.; Magini, D.; Bonci, A.; Buccato, S.; Giovani, C.; Kratzer, R.; Zurli, V.; Mangiavacchi, S.; Casini, D.; Brito, L. M. et al. Induction of broad–based immunity and protective efficacy by self–amplifying mRNA vaccines encoding influenza virus hemagglutinin. J. Virol. 2016, 90, 332–344.

    Google Scholar 

  145. [145]

    McCullough, K. C.; Bassi, I.; Milona, P.; Suter, R.; Thomann–Harwood, L.; Englezou, P.; Démoulins, T.; Ruggli, N. Self–replicating replicon–RNA delivery to dendritic cells by chitosan–nanoparticles for translation in vitro and in vivo. Mol. Ther. Nucleic Acids 2014, 3, e173.

    Google Scholar 

  146. [146]

    Démoulins, T.; Milona, P.; Englezou, P. C.; Ebensen, T.; Schulze, K.; Suter, R.; Pichon, C.; Midoux, P.; Guzmán, C. A.; Ruggli, N. et al. Polyethylenimine–based polyplex delivery of self–replicating RNA vaccines. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 711–722.

    Google Scholar 

  147. [147]

    Chahal, J. S.; Fang, T.; Woodham, A. W.; Khan, O. F.; Ling, J. J.; Anderson, D. G.; Ploegh, H. L. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci. Rep. 2017, 7, 252.

    Google Scholar 

  148. [148]

    Petsch, B.; Schnee, M.; Vogel, A. B.; Lange, E.; Hoffmann, B.; Voss, D.; Schlake, T.; Thess, A.; Kallen, K. J.; Stitz, L. et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol. 2012, 30, 1210–1216.

    Google Scholar 

  149. [149]

    Schnee, M.; Vogel, A. B.; Voss, D.; Petsch, B.; Baumhof, P.; Kramps, T.; Stitz, L. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl. Trop. Dis. 2016, 10, e0004746.

    Google Scholar 

  150. [150]

    Alberer, M.; Gnad–Vogt, U.; Hong, H. S.; Mehr, K. T.; Backert, L.; Finak, G.; Gottardo, R.; Bica, M. A.; Garofano, A.; Koch, S. D. et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: An open–label, non–randomised, prospective, first–in–human phase 1 clinical trial. Lancet 2017, 390, 1511–1520.

    Google Scholar 

  151. [151]

    Pollard, C.; Rejman, J.; De Haes, W.; Verrier, B.; Van Gulck, E.; Naessens, T.; De Smedt, S.; Bogaert, P.; Grooten, J.; Vanham, G. et al. Type I IFN counteracts the induction of antigen–specific immune responses by lipidbased delivery of mRNA vaccines. Mol. Ther. 2013, 21, 251–259.

    Google Scholar 

  152. [152]

    Zhao, M. N.; Li, M.; Zhang, Z. R.; Gong, T.; Sun, X. Induction of HIV–1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Deliv. 2016, 23, 2596–2607.

    Google Scholar 

  153. [153]

    Bahl, K.; Senn, J. J.; Yuzhakov, O.; Bulychev, A.; Brito, L. A.; Hassett, K. J.; Laska, M. E.; Smith, M.; Almarsson, O.; Thompson, J. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 2017, 25, 1316–1327.

    Google Scholar 

  154. [154]

    Richner, J. M.; Himansu, S.; Dowd, K. A.; Butler, S. L.; Salazar, V.; Fox, J. M.; Julander, J. G.; Tang, W. W.; Shresta, S.; Pierson, T. C. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 2017, 168, 1114–1125.e10.

    Google Scholar 

  155. [155]

    Richner, J. M.; Jagger, B. W.; Shan, C.; Fontes, C. R.; Dowd, K. A.; Cao, B.; Himansu, S.; Caine, E. A.; Nunes Bruno, T. D.; Medeiros Daniele, B. A. et al. Vaccine mediated protection against Zika virus–induced congenital disease. Cell 2017, 170, 273–283.e12.

    Google Scholar 

  156. [156]

    Zhou, W. Z.; Hoon, D. S.; Huang, S. K. S.; Fujii, S.; Hashimoto, K.; Morishita, R.; Kaneda, Y. RNA melanoma vaccine: Induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum. Gene Ther. 1999, 10, 2719–2724.

    Google Scholar 

  157. [157]

    Weide, B.; Pascolo, S.; Scheel, B.; Derhovanessian, E.; Pflugfelder, A.; Eigentler, T. K.; Pawelec, G.; Hoerr, I.; Rammensee, H. G.; Garbe, C. Direct injection of protamine–protected mRNA: Results of a phase 1/2 vaccination trial in metastatic melanoma patients. J. Immunother. 2009, 32, 498–507.

    Google Scholar 

  158. [158]

    Kübler, H.; Maurer, T.; Stenzl, A.; Feyerabend, S.; Steiner, U.; Schostak, M.; Schultze–Seemann, W.; vom Dorp, F.; Pilla, L.; Viatali, G. et al. Final analysis of a phase I/IIa study with CV9103, an intradermally administered prostate cancer immunotherapy based on self–adjuvanted mRNA. J. Clin. Oncol. 2011, 29, 4535.

    Google Scholar 

  159. [159]

    Oberli, M. A.; Reichmuth, A. M.; Dorkin, J. R.; Mitchell, M. J.; Fenton, O. S.; Jaklenec, A.; Anderson, D. G.; Langer, R.; Blankschtein, D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017, 17, 1326–1335.

    Google Scholar 

  160. [160]

    Phua, K. K. L.; Staats, H. F.; Leong, K. W.; Nair, S. K. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti–tumor immunity. Sci. Rep. 2014, 4, 5128.

    Google Scholar 

  161. [161]

    Perche, F.; Benvegnu, T.; Berchel, M.; Lebegue, L.; Pichon, C.; JaffrèS, P. A.; Midoux, P. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 2011, 7, 445–453.

    Google Scholar 

  162. [162]

    Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401.

    Google Scholar 

  163. [163]

    Fotin–Mleczek, M.; Zanzinger, K.; Heidenreich, R.; Lorenz, C.; Kowalczyk, A.; Kallen, K. J.; Huber, S. M. mRNA–based vaccines synergize with radiation therapy to eradicate established tumors. Radiat. Oncol. 2014, 9, 180.

    Google Scholar 

  164. [164]

    Liu, L. N.; Wang, Y. H.; Miao, L.; Liu, Q.; Musetti, S.; Li, J.; Huang, L. Combination immunotherapy of MUC1 mRNA nano–vaccine and CTLA–4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther. 2018, 26, 45–55.

    Google Scholar 

  165. [165]

    Wang, Y. H.; Zhang, L.; Xu, Z. H.; Miao, L.; Huang, L. mRNA vaccine with antigen–specific checkpoint blockade induces an enhanced immune response against established melanoma. Mol. Ther. 2018, 26, 420–434.

    Google Scholar 

  166. [166]

    Misra, A.; Trehan, S.; Sharma, G. siRNA: Sojourn from discovery to delivery challenges and clinics. Sys. Rev. Pharm. 2010, 1, 1–15.

    Google Scholar 

  167. [167]

    Zuckerman, J. E.; Davis, M. E. Clinical experiences with systemically administered siRNA–based therapeutics in cancer. Nat. Rev. Drug Discov. 2015, 14, 843–856.

    Google Scholar 

  168. [168]

    Anderson, D. M.; Hall, L. L.; Ayyalapu, A. R.; Irion, V. R.; Nantz, M. H.; Hecker, J. G. Stability of mRNA/cationic lipid lipoplexes in human and rat cerebrospinal fluid: Methods and evidence for nonviral mRNA gene delivery to the central nervous system. Hum. Gene Ther. 2003, 14, 191–202.

    Google Scholar 

  169. [169]

    Okumura, K.; Nakase, M.; Inui, M.; Nakamura, S.; Watanabe, Y.; Tagawa, T. Bax mRNA therapy using cationic liposomes for human malignant melanoma. J. Gene. Med. 2008, 10, 910–917.

    Google Scholar 

  170. [170]

    Sacco, M. G.; Soldati, S.; Mira, C. E.; Cattaneo, L.; Pratesi, G.; Scanziani, E.; Vezzoni, P. Combined effects on tumor growth and metastasis by anti–estrogenic and antiangiogenic therapies in MMTV–neu mice. Gene Ther. 2002, 9, 1338–1341.

    Google Scholar 

  171. [171]

    Uchida, S.; Kinoh, H.; Ishii, T.; Matsui, A.; Tockary, T. A.; Takeda, K. M.; Uchida, H.; Osada, K.; Itaka, K.; Kataoka, K. Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials 2016, 82, 221–228.

    Google Scholar 

  172. [172]

    An, D.; Schneller, J. L.; Frassetto, A.; Liang, S.; Zhu, X. L.; Park, J. S.; Theisen, M.; Hong, S. J.; Zhou, J.; Rajendran, R. et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 2017, 21, 3548–3558.

    Google Scholar 

  173. [173]

    Prieve, M. G.; Harvie, P.; Monahan, S. D.; Roy, D.; Li, A. G.; Blevins, T. L.; Paschal, A. E.; Waldheim, M.; Bell, E. C.; Galperin, A. et al. Targeted mRNA therapy for ornithine transcarbamylase deficiency. Mol. Ther. 2018, 26, 801–813.

    Google Scholar 

  174. [174]

    Schneider, M. D.; Baker, A. H.; Riley, P. Hopx and the cardiomyocyte parentage. Mol. Ther. 2015, 23, 1420–1422.

    Google Scholar 

  175. [175]

    DeRosa, F.; Guild, B.; Karve, S.; Smith, L.; Love, K.; Dorkin, J. R.; Kauffman, K. J.; Zhang, J.; Yahalom, B.; Anderson, D. G. et al. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther. 2016, 23, 699–707.

    Google Scholar 

  176. [176]

    Ramaswamy, S.; Tonnu, N.; Tachikawa, K.; Limphong, P.; Vega, J. B.; Karmali, P. P.; Chivukula, P.; Verma, I. M. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc. Natl. Acad. Sci. USA 2017, 114, E1941–1950.

    Google Scholar 

  177. [177]

    Baba, M.; Itaka, K.; Kondo, K.; Yamasoba, T.; Kataoka, K. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. J. Control. Release 2015, 201, 41–48.

    Google Scholar 

  178. [178]

    Matsui, A.; Uchida, S.; Ishii, T.; Itaka, K.; Kataoka, K. Messenger RNA–based therapeutics for the treatment of apoptosis–associated diseases. Sci. Rep. 2015, 5, 15810.

    Google Scholar 

  179. [179]

    Badieyan, Z. S.; Berezhanskyy, T.; Utzinger, M.; Aneja, M. K.; Emrich, D.; Erben, R.; Schüler, C.; Altpeter, P.; Ferizi, M.; Hasenpusch, G. et al. Transcript–activated collagen matrix as sustained mRNA delivery system for bone regeneration. J. Control. Release 2016, 239, 137–148.

    Google Scholar 

  180. [180]

    Balmayor, E. R.; Geiger, J. P.; Aneja, M. K.; Berezhanskyy, T.; Utzinger, M.; Mykhaylyk, O.; Rudolph, C.; Plank, C. Chemically modified RNA induces osteogenesis of stem cells and human tissue explants as well as accelerates bone healing in rats. Biomaterials 2016, 87, 131–146.

    Google Scholar 

  181. [181]

    Schrom, E.; Huber, M.; Aneja, M.; Dohmen, C.; Emrich, D.; Geiger, J.; Hasenpusch, G.; Herrmann–Janson, A.; Kretzschmann, V.; Mykhailyk, O. et al. Translation of angiotensin–converting enzyme 2 upon liver–and lungtargeted delivery of optimized chemically modified mRNA. Mol. Ther. Nucleic Acids 2017, 7, 350–365.

    Google Scholar 

  182. [182]

    Cox, D. B. T.; Platt, R. J.; Zhang, F. Therapeutic genome editing: Prospects and challenges. Nat. Med. 2015, 21, 121–131.

    Google Scholar 

  183. [183]

    Urnov, F. D.; Rebar, E. J.; Holmes, M. C.; Zhang, H. S.; Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646.

    Google Scholar 

  184. [184]

    Brouns, S. J. J.; Jore, M. M.; Lundgren, M.; Westra, E. R.; Slijkhuis, R. J. H.; Snijders, A. P. L.; Dickman, M. J.; Makarova, K. S.; Koonin, E. V.; van der Oost, J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321, 960–964.

    Google Scholar 

  185. [185]

    Pennisi, E. The CRISPR craze. Science 2013, 341, 833–836.

    Google Scholar 

  186. [186]

    Cong, L.; Ran, F. A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X.; Jiang, W.; Marraffini, L. A. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823.

    Google Scholar 

  187. [187]

    Garneau, J. E.; Dupuis, M. E.; Villion, M.; Romero, D. A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadán, A. H.; Moineau, S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468, 67–71.

    Google Scholar 

  188. [188]

    Doudna, J. A.; Charpentier, E. The new frontier of genome engineering with CRISPR–Cas9. Science 2014, 346, 1258096.

    Google Scholar 

  189. [189]

    Wang, H. Y.; Yang, H.; Shivalila, C. S.; Dawlaty, M. M.; Cheng, A. W.; Zhang, F.; Jaenisch, R. One–step generation of mice carrying mutations in multiple genes by CRISPR/Cas–mediated genome engineering. Cell 2013, 153, 910–918.

    Google Scholar 

  190. [190]

    Hsu, P. D.; Lander, E S.; Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 2014, 157, 1262–1278.

    Google Scholar 

  191. [191]

    Tsai, S. Q.; Zheng, Z. L.; Nguyen, N. T.; Liebers, M.; Topkar, V. V.; Thapar, V.; Wyvekens, N.; Khayter, C.; Iafrate, A. J.; Le, L. P. et al. GUIDE–seq enables genomewide profiling of off–target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 2015, 33, 187–197.

    Google Scholar 

  192. [192]

    Mout, R.; Ray, M.; Yesilbag, T. G.; Lee, Y. W.; Tay, T.; Sasaki, K.; Rotello, V. M. Direct cytosolic delivery of CRISPR/Cas9–ribonucleoprotein for efficient gene editing. ACS Nano 2017, 11, 2452–2458.

    Google Scholar 

  193. [193]

    Fu, Y. F.; Foden, J. A.; Khayter, C.; Maeder, M. L.; Reyon, D.; Joung, J. K.; Sander, J. D. High–frequency off–target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 2013, 31, 822–826.

    Google Scholar 

  194. [194]

    Liang, X. Q.; Potter, J.; Kumar, S.; Zou, Y. F.; Quintanilla, R.; Sridharan, M.; Carte, J.; Chen, W.; Roark, N.; Ranganathan, S. et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 2015, 208, 44–53.

    Google Scholar 

  195. [195]

    Shen, B.; Zhang, J.; Wu, H. Y.; Wang, J. Y.; Ma, K.; Li, Z.; Zhang, X. G.; Zhang, P. M.; Huang, X. X. Generation of gene–modified mice via Cas9/RNA–mediated gene targeting. Cell Res. 2013, 23, 720–723.

    Google Scholar 

  196. [196]

    Yang, D. S.; Xu, J.; Zhu, T. T.; Fan, J. L.; Lai, L. X.; Zhang, J. F.; Chen, Y. E. Effective gene targeting in rabbits using RNA–guided Cas9 nucleases. J. Mol. Cell Biol. 2014, 6, 97–99.

    Google Scholar 

  197. [197]

    Niu, Y. Y.; Shen, B.; Cui, Y. Q.; Chen, Y. C.; Wang, J. Y.; Wang, L.; Kang, Y.; Zhao, X. Y.; Si, W.; Li, W. et al. Generation of gene–modified cynomolgus monkey via Cas9/RNA–mediated gene targeting in one–cell embryos. Cell 2014, 156, 836–843.

    Google Scholar 

  198. [198]

    Eyquem, J.; Mansilla–Soto, J.; Giavridis, T.; van der Stegen, S. J. C.; Hamieh, M.; Cunanan, K. M.; Odak, A.; Gönen, M.; Sadelain, M. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 2017, 543, 113–117.

    Google Scholar 

  199. [199]

    Yin, H.; Song, C. Q.; Dorkin, J. R.; Zhu, L. J.; Li, Y. X.; Wu, Q. Q.; Park, A.; Yang, J.; Suresh, S.; Bizhanova, A. et al. Therapeutic genome editing by combined viral and non–viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016, 34, 328–333.

    Google Scholar 

  200. [200]

    Yin, H.; Song, C. Q.; Suresh, S.; Wu, Q. Q.; Walsh, S.; Rhym, L. H.; Mintzer, E.; Bolukbasi, M. F.; Zhu, L. J.; Kauffman, K. et al. Structure–guided chemical modification of guide RNA enables potent non–viral in vivo genome editing. Nat. Biotechnol. 2017, 35, 1179–1187.

    Google Scholar 

  201. [201]

    Jiang, C.; Mei, M.; Li, B.; Zhu, X. R.; Zu, W. H.; Tian, Y. J.; Wang, Q. N.; Guo, Y.; Dong, Y. Z.; Tan, X. A non–viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 2017, 27, 440–443.

    Google Scholar 

  202. [202]

    Miller, J. B.; Zhang, S. Y.; Kos, P.; Xiong, H.; Zhou, K. J.; Perelman, S. S.; Zhu, H.; Siegwart, D. J. Non–viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co–delivery of Cas9 mRNA and sgRNA. Angew. Chem., Int. Ed. 2017, 56, 1059–1063.

    Google Scholar 

  203. [203]

    Finn, J. D.; Smith, A. R.; Patel, M. C.; Shaw, L.; Youniss, M. R.; van Heteren, J.; Dirstine, T.; Ciullo, C.; Lescarbeau, R.; Seitzer, J. et al. A single administration of CRISPR/Cas9 lipid lanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018, 22, 2227–2235.

    Google Scholar 

  204. [204]

    Zetsche, B.; Gootenberg, J. S.; Abudayyeh, O. O.; Slaymaker, I. M.; Makarova, K. S.; Essletzbichler, P.; Volz, S. E.; Joung, J.; Van der Oust, J.; Regev, A. et al. Cpf1 is a single RNA–guided endonuclease of a Class 2 CRISPR–Cas system. Cell 2015, 163, 759–771.

    Google Scholar 

  205. [205]

    Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676.

    Google Scholar 

  206. [206]

    Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872.

    Google Scholar 

  207. [207]

    Yakubov, E.; Rechavi, G.; Rozenblatt, S.; Givol, D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem. Biophys. Res. Commun. 2010, 394, 189–193.

    Google Scholar 

  208. [208]

    Warren, L.; Manos, P. D.; Ahfeldt, T.; Loh, Y. H.; Li, H.; Lau, F.; Ebina, W.; Mandal, P. K.; Smith, Z. D.; Meissner, A. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell stem cell 2010, 7, 618–630.

    Google Scholar 

  209. [209]

    Warren, L.; Ni, Y. H.; Wang, J. W.; Guo, X. R. Feederfree derivation of human induced pluripotent stem cells with messenger RNA. Sci. Rep. 2012, 2, 657.

    Google Scholar 

  210. [210]

    Choi, H. Y.; Lee, T. J.; Yang, G. M.; Oh, J.; Won, J.; Han, J.; Jeong, G. J.; Kim, J.; Kim, J. H.; Kim, B. S. et al. Efficient mRNA delivery with graphene oxide–polyethylenimine for generation of footprint–free human induced pluripotent stem cells. J. Control. Release 2016, 235, 222–235.

    Google Scholar 

  211. [211]

    Lee, K.; Yu, P.; Lingampalli, N.; Kim, H. J.; Tang, R.; Murthy, N. Peptide–enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte–like cells. Int. J. Nanomedicine 2015, 10, 1841–1854.

    Google Scholar 

  212. [212]

    Koblas, T.; Leontovyc, I.; Loukotova, S.; Kosinova, L.; Saudek, F. Reprogramming of pancreatic exocrine cells AR42J into insulin–producing cells using mRNAs for Pdx1, Ngn3, and MafA transcription factors. Mol. Ther. Nucleic Acids 2016, 5, e320.

    Google Scholar 

  213. [213]

    Corritore, E.; Lee, Y. S.; Pasquale, V.; Liberati, D.; Hsu, M. J.; Lombard, C. A.; Van Der Smissen, P.; Vetere, A.; Bonner–Weir, S.; Piemonti, L. et al. V–maf musculoaponeurotic fibrosarcoma oncogene homolog a synthetic modified mRNA drives reprogramming of human pancreatic duct–derived cells into insulin–secreting cells. Stem Cell. Transl. Med. 2016, 5, 1525–1537.

    Google Scholar 

  214. [214]

    Simeonov, K. P.; Uppal, H. Direct reprogramming of human fibroblasts to hepatocyte–like cells by synthetic modified mRNAs. PLoS One 2014, 9, e100134.

    Google Scholar 

  215. [215]

    Levy, O.; Zhao, W. A.; Mortensen, L. J.; LeBlanc, S.; Tsang, K.; Fu, M. Y.; Phillips, J. A.; Sagar, V.; Anandakumaran, P.; Ngai, J. et al. mRNA–engineered mesenchymal stem cells for targeted delivery of interleukin–10 to sites of inflammation. Blood 2013, 122, E23–E32.

    Google Scholar 

  216. [216]

    Nowakowski, A.; Andrzejewska, A.; Boltze, J.; Nitzsche, F.; Cui, L. L.; Jolkkonen, J.; Walczak, P.; Lukomska, B.; Janowski, M. Translation, but not transfection limits clinically relevant, exogenous mRNA based induction of alpha–4 integrin expression on human mesenchymal stem cells. Sci. Rep. 2017, 7, 1103.

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NCI R01CA200900 and the Prostate Cancer Foundation Young Investigator Award. Q. Q. X. (No. 201706940012) and W. L. L. (No. 201708220056) were supported by the China Scholarship Council for study at Brigham and Women’s Hospital.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinjun Shi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, Q., Lee, G.Y., Ding, J. et al. Biomedical applications of mRNA nanomedicine. Nano Res. 11, 5281–5309 (2018). https://doi.org/10.1007/s12274-018-2146-1

Download citation

Keywords

  • messenger RNA
  • chemical modification
  • nanoparticle
  • vaccination
  • gene editing
  • protein-replacement
  • cellular reprogramming and engineering