Skip to main content
Log in

A new sodium iron phosphate as a stable high-rate cathode material for sodium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Low-cost room-temperature sodium-ion batteries (SIBs) are expected to promote the development of stationary energy storage applications. However, due to the large size of Na+, most Na+ host structures resembling their Li+ counterparts show sluggish ion mobility and destructive volume changes during Na ion (de)intercalation, resulting in unsatisfactory rate and cycling performances. Herein, we report a new type of sodium iron phosphate (Na0.71Fe1.07PO4), which exhibits an extremely small volume change (~ 1%) during desodiation. When applied as a cathode material for SIBs, this new phosphate delivers a capacity of 78 mA·h·g−1 even at a high rate of 50 C and maintains its capacity over 5,000 cycles at 20 C. In situ synchrotron characterization disclosed a highly reversible solid-solution mechanism during charging/discharging. The findings are believed to contribute to the development of high-performance batteries based on Earth-abundant elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Article  Google Scholar 

  2. Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodiumion batteries. Adv. Energy Mater. 2016, 6, 1600943.

    Article  Google Scholar 

  3. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  Google Scholar 

  4. Pan, H. L.; Hu, Y.-S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

    Article  Google Scholar 

  5. Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74–80.

    Article  Google Scholar 

  6. Komaba, S.; Takei, C.; Nakayama, T.; Ogata, A.; Yabuuchi, N. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochem. Commun. 2010, 12, 355–358.

    Article  Google Scholar 

  7. Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.

    Article  Google Scholar 

  8. Wang, Y. S.; Yu, X. Q.; Xu, S. Y.; Bai, J. M.; Xiao, R. J.; Hu, Y.-S.; Li, H.; Yang, X.-Q.; Chen, L. Q.; Huang, X. J. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 2013, 4, 2365.

    Article  Google Scholar 

  9. Oh, S.-M.; Myung, S.-T.; Hassoun, J.; Scrosati, B.; Sun, Y.-K. Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem. Commun. 2012, 22, 149–152.

    Article  Google Scholar 

  10. Kim, H.; Shakoor, R. A.; Park, C.; Lim, S. Y.; Kim, J.-S.; Jo, Y. N.; Cho, W.; Miyasaka, K.; Kahraman, R.; Jung, Y. et al. Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: A combined experimental and theoretical study. Adv. Funct. Mater. 2013, 23, 1147–1155.

    Article  Google Scholar 

  11. Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y.-S.; Li, H.; Chen, W.; Chen, L. Q. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 2012, 14, 86–89.

    Article  Google Scholar 

  12. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.

    Article  Google Scholar 

  13. Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.

    Article  Google Scholar 

  14. Lee, M. J.; Lho, E.; Bai, P.; Chae, S.; Li, J.; Cho, J. Lowtemperature carbon coating of nanosized Li1.015Al0.06Mn1.925O4 and high-density electrode for high-power Li-ion batteries. Nano Lett. 2017, 17, 3744–3751.

    Article  Google Scholar 

  15. Fang, Y. J.; Liu, Q.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. High-performance olivine NaFePO4 microsphere cathode synthesized by aqueous electrochemical displacement method for sodium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 17977–17984.

    Article  Google Scholar 

  16. Han, M. H.; Gonzalo, E.; Casas-Cabanas, M.; Rojo, T. Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. J. Power Sources 2014, 258, 266–271.

    Article  Google Scholar 

  17. Ait Salah, A.; Jozwiak, P.; Zaghib, K.; Garbarczyk, J.; Gendron, F.; Mauger, A.; Julien, C. M. FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochim. Acta A 2006, 65, 1007–1013.

    Article  Google Scholar 

  18. Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

    Article  Google Scholar 

  19. Ait-Salah, A.; Dodd, J.; Mauger, A.; Yazami, R.; Gendron, F.; Julien, C. M. Structural and magnetic properties of LiFePO4 and lithium extraction effects. Z. Anorg. Allg. Chem. 2006, 632, 1598–1605.

    Article  Google Scholar 

  20. Fang, Y. J.; Xiao, L. F.; Qian, J. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. Nano Lett. 2014, 14, 3539–3543.

    Article  Google Scholar 

  21. Kim, J.; Seo, D.-H.; Kim, H.; Park, I.; Yoo, J.-K.; Jung, S.-K.; Park, Y.-U.; Goddard, W. A., III; Kang, K. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ. Sci. 2015, 8, 540–545.

    Article  Google Scholar 

  22. Zhu, Y. J.; Xu, Y. H.; Liu, Y. H.; Luo, C.; Wang, C. S. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 2013, 5, 780–787.

    Article  Google Scholar 

  23. Liu, C. F.; Neale, Z. G.; Cao, G. Z. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 2016, 19, 109–123.

    Article  Google Scholar 

  24. Jamnik, J.; Maier, J. Nanocrystallinity effects in lithium battery materials: Aspects of nano-ionics. Part IV. Phys. Chem. Chem. Phys. 2003, 5, 5215–5220.

    Article  Google Scholar 

  25. Li, C.; Miao, X.; Chu, W.; Wu, P.; Tong, D. G. Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 8265–8271.

    Article  Google Scholar 

  26. Langrock, A.; Xu, Y. H.; Liu, Y. H.; Ehrman, S.; Manivannan, A.; Wang, C. S. Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes. J. Power Sources 2013, 223, 62–67.

    Article  Google Scholar 

  27. Barpanda, P.; Oyama, G.; Nishimura, S.-I.; Chung, S.-C.; Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 2014, 5, 4358.

    Article  Google Scholar 

  28. Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries. Adv. Energy Mater 2012, 2, 410–414.

    Article  Google Scholar 

  29. Chen, J. E.; Huang, Z. G.; Wang, C. Y.; Porter, S.; Wang, B. F.; Lie, W.; Liu, H. K. Sodium-difluoro(oxalato)borate (NaDFOB): A new electrolyte salt for Na-ion batteries. Chem. Commun. 2015, 51, 9809–9812.

    Article  Google Scholar 

  30. Hu, M.; Wei, J. P.; Xing, L. Y.; Zhou, Z. Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries. J. Appl. Electrochem. 2012, 42, 291–296.

    Article  Google Scholar 

  31. Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H.-H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C. et al. Electrode–electrolyte interface in Li-ion batteries: Current understanding and new insights. J. Phys. Chem. Lett. 2015, 6, 4653–4672.

    Article  Google Scholar 

  32. Kim, H.; Park, I.; Lee, S.; Kim, H.; Park, K.-Y.; Park, Y. U.; Kim, H.; Kim, J.; Lim, H.-D.; Yoon, W.-S. et al. Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery. Chem. Mater. 2013, 25, 3614–3622.

    Article  Google Scholar 

  33. Kim, H.; Yoon, G.; Park, I.; Park, K. Y.; Lee, B.; Kim, J.; Park, Y. U.; Jung, S. K.; Lim, H. D.; Ahn, D. et al. Anomalous Jahn-Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy Environ. Sci. 2015, 8, 3325–3335.

    Article  Google Scholar 

  34. Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.; Carlach, P.; Hamelet, S.; Tarascon, J.-M.; Masquelier, C. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat. Mater. 2008, 7, 741–747.

    Article  Google Scholar 

Download references

Acknowledgements

Financial Support from Australian Research Council (ARC) through its Discovery Projects (DPs) and Linkage Projects (LPs) is acknowledged. The authors also acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility (AMMRF) at the Centre for Microscopy and Microanalysis (CMM), The University of Queensland, as well as the beamline at the Australian Synchrotron, part of Australian Nuclear Science and Technology Organisation (ANSTO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianzhou Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Mochiku, T., Fujii, H. et al. A new sodium iron phosphate as a stable high-rate cathode material for sodium ion batteries. Nano Res. 11, 6197–6205 (2018). https://doi.org/10.1007/s12274-018-2139-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2139-0

Keywords

Navigation