Skip to main content
Log in

Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition

Nano Research Aims and scope Submit manuscript

Abstract

Latent fingerprints (LFPs) are highly specific to individuals, and LFP imaging has played an important role in areas such as forensic investigation and law enforcement. Presently, LFP imaging still faces considerable problems, including background interference and destructive and complex operations. Herein, we have designed a background-free, nondestructive, and easy-to-perform method for LFP imaging based on pH-mediated recognition of LFPs by carboxyl group-functionalized Zn2GeO4:Mn (ZGO:Mn-COOH) persistent luminescence nanorods (PLNRs). By simply adjusting the pH of the ZGO:Mn-COOH colloid dispersion to a certain acidic range, the negatively charged ZGO:Mn-COOH readily binds to protonated fingerprint ridges via electrostatic attraction. The ZGO:Mn-COOH colloid dispersion can be stored in portable commercial spray bottles, and the LFPs have been easily detected in situ by simply dropping the colloid dispersion on the LFPs. Moreover, since the ZGO:Mn-COOH can remain luminescent after excitation ceases, background color and background fluorescence interference were efficiently removed by simply capturing the luminescent LFP images after the excitation ceased. The entire LFP imaging process can be easily conducted without any destructive or complex operations. Due to the great versatility of the developed method for LFP imaging, clear LFP images with well-resolved ridge patterns were obtained. The designed background-free, nondestructive, and easy-to-perform LFP imaging strategy has great potential for future applications, such as forensic investigations and law enforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Wu, P.; Xu, C. Y.; Hou, X. D.; Xu, J. J.; Chen, H. Y. Dual-emitting quantum dot nanohybrid for imaging of latent fingerprints: Simultaneous identification of individuals and traffic light-type visualization of TNT. Chem. Sci. 2015, 6, 4445–4450.

    Article  Google Scholar 

  2. He, Y. Y.; Xu, L. R.; Zhu, Y.; Wei, Q. H.; Zhang, M. Q.; Su, B. Immunological multimetal deposition for rapid visualization of sweat fingerprints. Angew. Chem., Int. Ed. 2014, 53, 12609–12612.

    Google Scholar 

  3. Li, K.; Qin, W. W.; Li, F.; Zhao, X. C.; Jiang, B. W.; Wang, K.; Deng, S. H.; Fan, C. H.; Li, D. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angew. Chem., Int. Ed. 2013, 52, 11542–11545.

    Article  Google Scholar 

  4. Ran, X.; Wang, Z. Z.; Zhang, Z. J.; Pu, F.; Ren, J. S.; Qu, X. G. Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances. Chem. Commun. 2016, 52, 557–560.

    Article  Google Scholar 

  5. Wang, J.; Ma, Q. Q.; Liu, H. Y.; Wang, Y. Q.; Shen, H. J.; Hu, X. X.; Ma, C.; Yuan, Q.; Tan, W. H. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition. Anal. Chem. 2017, 89, 12764–12770.

    Article  Google Scholar 

  6. Su, B. Recent progress on fingerprint visualization and analysis by imaging ridge residue components. Anal. Bioanal. Chem. 2016, 408, 2781–2791.

    Article  Google Scholar 

  7. Lee, H. C.; Gaensslen, R. E. Advances in Fingerprint Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2001.

    Book  Google Scholar 

  8. Peng, T. H.; Qin, W. W.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D. Nanoplasmonic imaging of latent fingerprints with explosive RDX residues. Anal. Chem. 2015, 87, 9403–9407.

    Article  Google Scholar 

  9. Song, K.; Huang, P.; Yi, C. L.; Ning, B.; Hu, S.; Nie, L. M.; Chen, X. Y.; Nie, Z. H. Photoacoustic and colorimetric visualization of latent fingerprints. ACS Nano 2015, 9, 12344–12348.

    Article  Google Scholar 

  10. Xu, L. R.; Li, Y.; Wu, S. Z.; Liu, X. H.; Su, B. Imaging latent fingerprints by electrochemiluminescence. Angew. Chem., Int. Ed. 2012, 124, 8192–8196.

    Article  Google Scholar 

  11. Tang, X. M.; Huang, L. L.; Zhang, W. Y.; Zhong, H. Y. Chemical imaging of latent fingerprints by mass spectrometry based on laser activated electron tunneling. Anal. Chem. 2015, 87, 2693–2701.

    Article  Google Scholar 

  12. Chen, H. B.; Chang, K. W.; Men, X. J.; Sun, K.; Fang, X. F.; Ma, C.; Zhao, Y. X.; Yin, S. Y.; Qin, W. P.; Wu, C. F. Covalent patterning and rapid visualization of latent fingerprints with photo-cross-linkable semiconductor polymer dots. ACS Appl. Mater. Interfaces 2015, 7, 14477–14484.

    Article  Google Scholar 

  13. Cui, J. B.; Xu, S. Y.; Guo, C.; Jiang, R.; James, T. D.; Wang, L. Y. Highly efficient photothermal semiconductor nanocomposites for photothermal imaging of latent fingerprints. Anal. Chem. 2015, 87, 11592–11598.

    Article  Google Scholar 

  14. Hazarika, P.; Jickells, S. M.; Wolff, K.; Russell, D. A. Imaging of latent fingerprints through the detection of drugs and metabolites. Angew. Chem., Int. Ed. 2008, 47, 10167–10170.

    Article  Google Scholar 

  15. Brunelle, E.; Huynh, C.; Le, A. M.; Halámková, L.; Agudelo, J.; Halámek, J. New horizons for ninhydrin: Colorimetric determination of gender from fingerprints. Anal. Chem. 2016, 88, 2413–2420.

    Article  Google Scholar 

  16. Xu, C. Y.; Zhou, R. H.; He, W. W.; Wu, L.; Wu, P.; Hou, X. D. Fast imaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs. Anal. Chem. 2014, 86, 3279–3283.

    Article  Google Scholar 

  17. Chen, X.; Xu, W.; Zhang, L. H.; Bai, X.; Cui, S. B.; Zhou, D. L.; Yin, Z.; Song, H. W.; Kim, D. H. Large upconversion enhancement in the “islands” Au–Ag alloy/NaYF4:Yb3+, Tm3+/Er3+ composite films, and fingerprint identification. Adv. Funct. Mater. 2015, 25, 5462–5471.

    Article  Google Scholar 

  18. Xu, L. R.; Zhang, C. Z.; He, Y. Y.; Su, B. Advances in the development and component recognition of latent fingerprints. Sci. China Chem. 2015, 58, 1090–1096.

    Article  Google Scholar 

  19. Wang, J.; Wei, T.; Li, X. Y.; Zhang, B. H.; Wang, J. X.; Huang, C.; Yuan, Q. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition. Angew. Chem., Int. Ed. 2014, 53, 1616–1620.

    Article  Google Scholar 

  20. Ramotowski, R. Lee and Gaensslen’s Advances in Fingerprint Technology, 3rd ed.; CRC press: Boca Raton, FL, USA, 2012.

    Book  Google Scholar 

  21. Menzel, E. R. Recent advances in photoluminescence detection of fingerprints. Sci. World J. 2001, 1, 498–509.

    Article  Google Scholar 

  22. Frick, A. A.; Busetti, F.; Cross, A.; Lewis, S. W. Aqueous Nile blue: A simple, versatile and safe reagent for the detection of latent fingermarks. Chem. Commun. 2014, 50, 3341–3343.

    Article  Google Scholar 

  23. Li, Y.; Xu, L. R.; Su, B. Aggregation induced emission for the recognition of latent fingerprints. Chem. Commun. 2012, 48, 4109–4111.

    Article  Google Scholar 

  24. Li, Z. J.; Zhang, Y. W.; Wu, X.; Huang, L.; Li, D. S.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable nearinfrared persistent luminescence. J. Am. Chem. Soc. 2015, 137, 5304–5307.

    Article  Google Scholar 

  25. Wang, J.; Ma, Q. Q.; Zheng, W.; Liu, H. Y.; Yin, C. Q.; Wang, F. B.; Chen, X. Y.; Yuan, Q.; Tan, W. H. Onedimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 2017, 11, 8185–8191.

    Article  Google Scholar 

  26. Wu, B. Y.; Wang, H. F.; Chen, J. T.; Yan, X. P. Fluorescence resonance energy transfer inhibition assay for a-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 2011, 133, 686–688.

    Article  Google Scholar 

  27. Wu, S. Q.; Yang, C. X.; Yan, X. P. A dual-functional persistently luminescent nanocomposite enables engineering of mesenchymal stem cells for homing and gene therapy of glioblastoma. Adv. Funct. Mater. 2017, 27, 1604992.

    Article  Google Scholar 

  28. le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J. P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271.

    Article  Google Scholar 

  29. Wang, J.; Ma, Q. Q.; Wang, Y. Q.; Shen, H. J.; Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale 2017, 9, 6204–6218.

    Article  Google Scholar 

  30. Liu, H. Y.; Hu, X. X.; Wang, J.; Liu, M.; Wei, W.; Yuan, Q. Direct low-temperature synthesis of ultralong persistent luminescence nanobelts based on a biphasic solutionchemical reaction. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2018.02.005.

    Google Scholar 

  31. Li, N.; Diao, W.; Han, Y. Y.; Pan, W.; Zhang, T. T.; Tang, B. MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo. Chem.—Eur. J. 2014, 20, 16488–16491.

    Article  Google Scholar 

  32. Chen, L. J.; Yang, C. X.; Yan, X. P. Liposome-coated persistent luminescence nanoparticles as luminescence trackable drug carrier for chemotherapy. Anal. Chem. 2017, 89, 6936–6939.

    Article  Google Scholar 

  33. Wang, J.; Ma, Q. Q.; Hu, X. X.; Liu, H. Y.; Zheng, W.; Chen, X. Y.; Yuan, Q.; Tan, W. H. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 2017, 11, 8010–8017.

    Article  Google Scholar 

  34. Abdukayum, A.; Chen, J. T.; Zhao, Q.; Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125–14133.

    Article  Google Scholar 

  35. Abdukayum, A.; Yang, C. X.; Zhao, Q.; Chen, J. T.; Dong, L. X.; Yan, X. P. Gadolinium Complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. Anal. Chem. 2014, 86, 4096–4101.

    Article  Google Scholar 

  36. Li, Z. J.; Huang, L.; Zhang, Y. W.; Zhao, Y.; Yang, H.; Han, G. Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Res. 2017, 10, 1840–1846.

    Article  Google Scholar 

  37. Wang, Y.; Yang, C. X.; Yan, X. P. Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale 2017, 9, 9049–9055.

    Article  Google Scholar 

  38. Song, L.; Li, P. P.; Yang, W.; Lin, X. H.; Liang, H.; Chen, X. F.; Liu, G.; Li, J.; Yang, H. H. Low-dose X-ray activation of W(VI)-doped persistent luminescence nanoparticles for deep-tissue photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1707496.

    Article  Google Scholar 

  39. Zou, R.; Huang, J. J.; Shi, J. P.; Huang, L.; Zhang, X. J.; Wong, K. L.; Zhang, H. W.; Jin, D. Y.; Wang, J.; Su, Q. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Res. 2017, 10, 2070–2082.

    Article  Google Scholar 

  40. Stauffer, E.; Becue, A.; Singh, K. V.; Thampi, K. R.; Champod, C.; Margot, P. Single-metal deposition (SMD) as a latent fingermark enhancement technique: An alternative to multimetal deposition (MMD). Forensic Sci. Int. 2007, 168, e5–e9.

    Article  Google Scholar 

  41. Choi, M. J.; McDonagh, A. M.; Maynard, P.; Roux, C. Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Sci. Int. 2008, 179, 87–97.

    Article  Google Scholar 

  42. Moret, S.; Bécue, A.; Champod, C. Functionalised silicon oxide nanoparticles for fingermark detection. Forensic Sci. Int. 2016, 259, 10–18.

    Article  Google Scholar 

  43. Song, L.; Lin, X. H.; Song, X. R.; Chen, S.; Chen, X. F.; Li, J.; Yang, H. H. Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale 2017, 9, 2718–2722.

    Article  Google Scholar 

  44. Zhou, Z. H.; Zheng, W.; Kong, J. T.; Liu, Y.; Huang, P.; Zhou, S. Y.; Chen, Z.; Shi, J. L.; Chen, X. Y. Rechargeable and LED-activated ZnGa2O4:Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale 2017, 9, 6846–6853.

    Article  Google Scholar 

  45. Lin, X. H.; Song, L.; Chen, S.; Chen, X. F.; Wei, J. J.; Li, J. Y.; Huang, G. M.; Yang, H. H. Kiwifruit-like persistent luminescent nanoparticles with high-performance and in situ activable near-infrared persistent luminescence for long-term in vivo bioimaging. ACS Appl. Mater. Interfaces 2017, 9, 41181–41187.

    Article  Google Scholar 

  46. Li, N.; Li, Y. H.; Han, Y. Y.; Pan, W.; Zhang, T. T.; Tang, B. A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo. Anal. Chem. 2014, 86, 3924–3930.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21675120), the National Key R&D Program of China (No. 2017YFA0208000), the National Basic Research Program of China (973 Program, No. 2015CB932600), the Open Funding Project of the State Key Laboratory of Biochemical Engineering (No. 4102010299) and the Fundamental Research Funds for the Central Universities (No. 2042017kf0210). Q. Y. thanks the large-scale instrument and equipment sharing foundation of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Yuan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, Q., Wang, Y. et al. Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Res. 11, 6167–6176 (2018). https://doi.org/10.1007/s12274-018-2133-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2133-6

Keywords

Navigation