Nano Research

, Volume 11, Issue 10, pp 5424–5438 | Cite as

Phototriggered targeting of nanocarriers for drug delivery

  • Yafei Li
  • Yaming Zhang
  • Weiping Wang
Review Article


Stimuli-triggered targeting of drug delivery systems can both increase the therapeutic efficacy and lower toxicity by selectively delivering drugs at target sites with high specificity and efficiency. Light is a convenient and powerful stimulus for use in such drug delivery systems because it is readily available and noninvasive and offers excellent spatiotemporal control. The power and wavelength of light can be finely tuned for different photoresponsive systems to achieve efficient targeting at the tissue, cellular, or subcellular levels. Here, we have reviewed the various mechanisms for phototriggered targeting (phototargeting) of drug nanocarriers. We have discussed the three main phototargeting strategies: (1) targeting ligand activation; (2) particle size reduction; and (3) blood vessel disruption.


photocleavable groups photorelease photoresponsive nanoparticles phototargeting stimuli-responsive drug delivery targeted drug delivery 



We gratefully acknowledge financial support from Dr. Li Dak-Sum Research Fund (Start-up Fund) of The University of Hong Kong and Seed Fund for Basic Research of The University of Hong Kong (Nos. 201704159010 and 201711159053).


  1. [1]
    Park, K. Controlled drug delivery systems: Past forward and future back. J. Control. Release 2014, 190, 3–8.CrossRefGoogle Scholar
  2. [2]
    Davis, M. E.; Chen, Z.; Shin, D. M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782.CrossRefGoogle Scholar
  3. [3]
    Helfand, W. H.; Cowen, D. L. Evolution of pharmaceutical oral dosage forms. Pharm. Hist. 1983, 25, 3–18.Google Scholar
  4. [4]
    Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.CrossRefGoogle Scholar
  5. [5]
    Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.CrossRefGoogle Scholar
  6. [6]
    Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 2015, 91, 3–6.CrossRefGoogle Scholar
  7. [7]
    Kobayashi, H.; Watanabe, R.; Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013, 4, 81–89.CrossRefGoogle Scholar
  8. [8]
    Verhoef, J. J. F.; Anchordoquy, T. J. Questioning the use of PEG ylation for drug delivery. Drug Deliv. Transl. Res. 2013, 3, 499–503.CrossRefGoogle Scholar
  9. [9]
    Yang, Q.; Lai, S. K. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 655–677.CrossRefGoogle Scholar
  10. [10]
    Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2002, 2, 750–763.CrossRefGoogle Scholar
  11. [11]
    Mi, Y.; Liu, Y. T.; Feng, S. S. Formulation of docetaxel by folic acid-conjugated D-α-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy. Biomaterials 2011, 32, 4058–4066.CrossRefGoogle Scholar
  12. [12]
    Wang, J.; Liu, Q.; Zhang, Y. T.; Shi, H.; Liu, H.; Guo, W. J.; Ma, Y. H.; Huang, W. Q.; Hong, Z. Y. Folic acidconjugated pyropheophorbide a as the photosensitizer tested for in vivo targeted photodynamic therapy. J. Pharm. Sci. 2017, 106, 1482–1489.CrossRefGoogle Scholar
  13. [13]
    Danhier, F.; Le Breton, A.; Préat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm. 2012, 9, 2961–2973.CrossRefGoogle Scholar
  14. [14]
    Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 2000, 41, 147–162.CrossRefGoogle Scholar
  15. [15]
    Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62, 90–99.CrossRefGoogle Scholar
  16. [16]
    Shuhendler, A. J.; Prasad, P.; Leung, M.; Rauth, A. M.; DaCosta, R. S.; Wu, X. Y. A novel solid lipid nanoparticle formulation for active targeting to tumor αvβ3 integrin receptors reveals cyclic RGD as a double-edged sword. Adv. Healthc. Mater. 2012, 1, 600–608.CrossRefGoogle Scholar
  17. [17]
    Dvir, T.; Banghart, M. R.; Timko, B. P.; Langer, R.; Kohane, D. S. Photo-targeted nanoparticles. Nano Lett. 2010, 10, 250–254.CrossRefGoogle Scholar
  18. [18]
    Wang, S.; Huang, P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28, 7340–7364.CrossRefGoogle Scholar
  19. [19]
    Arrue, L.; Ratjen, L. Internal targeting and external control: Phototriggered targeting in nanomedicine. ChemMedChem 2017, 12, 1908–1916.CrossRefGoogle Scholar
  20. [20]
    Wang, Y. F.; Kohane, D. S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2017, 2, 17020.CrossRefGoogle Scholar
  21. [21]
    Wang, S.; Huang, P.; Chen, X. Y. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano 2016, 10, 2991–2994.CrossRefGoogle Scholar
  22. [22]
    Lee, E. S.; Gao, Z. G.; Kim, D.; Park, K.; Kwon, I. C.; Bae, Y. H. Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance. J. Control. Release 2008, 129, 228–236.CrossRefGoogle Scholar
  23. [23]
    Zhan, C. Y.; Wang, W. P.; Santamaria, C.; Wang, B.; Rwei, A.; Timko, B. P.; Kohane, D. S. Ultrasensitive phototriggered local anesthesia. Nano Lett. 2017, 17, 660–665.CrossRefGoogle Scholar
  24. [24]
    Rwei, A. Y.; Paris, J. L.; Wang, B.; Wang, W. P.; Axon, C. D.; Vallet-Regí, M.; Langer, R.; Kohane, D. S. Ultrasound-triggered local anaesthesia. Nat. Biomed. Eng. 2017, 1, 644–653.CrossRefGoogle Scholar
  25. [25]
    Meyer, D. E.; Shin, B. C.; Kong, G. A.; Dewhirst, M. W.; Chilkoti, A. Drug targeting using thermally responsive polymers and local hyperthermia. J. Control. Release 2001, 74, 213–224.CrossRefGoogle Scholar
  26. [26]
    Dugan, A.; Majmudar, C. Y.; Pricer, R.; Niessen, S.; Lancia, J. K.; Fung, H. Y. H.; Cravatt, B. F.; Mapp, A. K. Discovery of enzymatic targets of transcriptional activators via in vivo covalent chemical capture. J. Am. Chem. Soc. 2016, 138, 12629–12635.CrossRefGoogle Scholar
  27. [27]
    Tian, X.; Zhang, L. C.; Yang, M.; Bai, L.; Dai, Y. H.; Yu, Z. Q.; Pan, Y. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1476.CrossRefGoogle Scholar
  28. [28]
    Li, J. J.; Li, Y. F.; Wang, Y. H.; Ke, W. D.; Chen, W. J.; Wang, W. P.; Ge, Z. S. Polymer prodrug-based nanoreactors activated by tumor acidity for orchestrated oxidation/chemotherapy. Nano Lett. 2017, 17, 6983–6990.CrossRefGoogle Scholar
  29. [29]
    Font, J.; López-Cano, M.; Notartomaso, S.; Scarselli, P.; Di Pietro, P.; Bresolí-Obach, R.; Battaglia, G.; Malhaire, F.; Rovira, X.; Catena, J. et al. Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator. eLife 2017, 6, e23545.CrossRefGoogle Scholar
  30. [30]
    Lv, W.; Zhang, Z.; Zhang, K. Y.; Yang, H. R.; Liu, S. J.; Xu, A. Q.; Guo, S.; Zhao, Q.; Huang, W. A mitochondriatargeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angew. Chem., Int. Ed. 2016, 55, 9947–9951.CrossRefGoogle Scholar
  31. [31]
    Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martin Rodríguez, E.; García Solé, J. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530.CrossRefGoogle Scholar
  32. [32]
    Yu, H. T.; Li, J. B.; Wu, D. D.; Qiu, Z. J.; Zhang, Y. Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 2010, 39, 464–473.CrossRefGoogle Scholar
  33. [33]
    Fomina, N.; Sankaranarayanan, J.; Almutairi, A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev. 2012, 64, 1005–1020.CrossRefGoogle Scholar
  34. [34]
    Gohy, J. F.; Zhao, Y. Photo-responsive block copolymer micelles: Design and behavior. Chem. Soc. Rev. 2013, 42, 7117–7129.CrossRefGoogle Scholar
  35. [35]
    Barhoumi, A.; Liu, Q.; Kohane, D. S. Ultraviolet lightmediated drug delivery: Principles, applications, and challenges. J. Control. Release 2015, 219, 31–42.CrossRefGoogle Scholar
  36. [36]
    Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.CrossRefGoogle Scholar
  37. [37]
    Rwei, A. Y.; Wang, W. P.; Kohane, D. S. Photoresponsive nanoparticles for drug delivery. Nano Today 2015, 10, 451–467.CrossRefGoogle Scholar
  38. [38]
    Wang, W. P.; Liu, Q.; Zhan, C. Y.; Barhoumi, A.; Yang, T. S.; Wylie, R. G.; Armstrong, P. A.; Kohane, D. S. Efficient triplet-triplet annihilation-based upconversion for nanoparticle phototargeting. Nano Lett. 2015, 15, 6332–6338.CrossRefGoogle Scholar
  39. [39]
    Tong, R.; Hemmati, H. D.; Langer, R.; Kohane, D. S. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc. 2012, 134, 8848–8855.CrossRefGoogle Scholar
  40. [40]
    Sano, K.; Nakajima, T.; Choyke, P. L.; Kobayashi, H. Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors. ACS Nano 2013, 7, 717–724.CrossRefGoogle Scholar
  41. [41]
    Gormley, A. J.; Larson, N.; Sadekar, S.; Robinson, R.; Ray, A.; Ghandehari, H. Guided delivery of polymer therapeutics using plasmonic photothermal therapy. Nano Today 2012, 7, 158–167.CrossRefGoogle Scholar
  42. [42]
    Klán, P.; Šolomek, T.; Bochet, C. G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Photoremovable protecting groups in chemistry and biology: Reaction mechanisms and efficacy. Chem. Rev. 2013, 113, 119–191.CrossRefGoogle Scholar
  43. [43]
    Han, G.; Mokari, T.; Ajo-Franklin, C.; Cohen, B. E. Caged quantum dots. J. Am. Chem. Soc. 2008, 130, 15811–15813.CrossRefGoogle Scholar
  44. [44]
    Han, G.; You, C. C.; Kim, B. J.; Turingan, R. S.; Forbes, N. S.; Martin, C. T.; Rotello, V. M. Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew. Chem., Int. Ed. 2006, 118, 3237–3241.CrossRefGoogle Scholar
  45. [45]
    Lin, Q. N.; Huang, Q.; Li, C. Y.; Bao, C. Y.; Liu, Z. Z.; Li, F. Y.; Zhu, L. Y. Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one-or two-photon process. J. Am. Chem. Soc. 2010, 132, 10645–10647.CrossRefGoogle Scholar
  46. [46]
    Lin, Q. N.; Bao, C. Y.; Cheng, S. Y.; Yang, Y. L.; Ji, W.; Zhu, L. Y. Target-activated coumarin phototriggers specifically switch on fluorescence and photocleavage upon bonding to thiol-bearing protein. J. Am. Chem. Soc. 2012, 134, 5052–5055.CrossRefGoogle Scholar
  47. [47]
    Fan, N. C.; Cheng, F. Y.; Ho, J. A. A.; Yeh, C. S. Photocontrolled targeted drug delivery: Photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew. Chem., Int. Ed. 2012, 51, 8806–8810.CrossRefGoogle Scholar
  48. [48]
    Yang, R.; Wei, T.; Goldberg, H.; Wang, W. P.; Cullion, K.; Kohane, D. S. Getting drugs across biological barriers. Adv. Mater. 2017, 29, 1606596.CrossRefGoogle Scholar
  49. [49]
    Yang, Y.; Yang, Y. F.; Xie, X. Y.; Cai, X. S.; Mei, X. G. Preparation and characterization of photo-responsive cellpenetrating peptide-mediated nanostructured lipid carrier. J. Drug Target. 2014, 22, 891–900.CrossRefGoogle Scholar
  50. [50]
    Shamay, Y.; Adar, L.; Ashkenasy, G.; David, A. Light induced drug delivery into cancer cells. Biomaterials 2011, 32, 1377–1386.CrossRefGoogle Scholar
  51. [51]
    Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317.CrossRefGoogle Scholar
  52. [52]
    Fournier, L.; Gauron, C.; Xu, L. J.; Aujard, I.; Le Saux, T.; Gagey-Eilstein, N.; Maurin, S.; Dubruille, S.; Baudin, J. B.; Bensimon, D. et al. A blue-absorbing photolabile protecting group for in vivo chromatically orthogonal photoactivation. ACS Chem. Biol. 2013, 8, 1528–1536.CrossRefGoogle Scholar
  53. [53]
    Herzig, L. M.; Elamri, I.; Schwalbe, H.; Wachtveitl, J. Light-induced antibiotic release from a coumarin-caged compound on the ultrafast timescale. Phys. Chem. Chem. Phys. 2017, 19, 14835–14844.CrossRefGoogle Scholar
  54. [54]
    Pavlovic, I.; Thakor, D. T.; Vargas, J. R.; McKinlay, C. J.; Hauke, S.; Anstaett, P.; Camuna, R. C.; Bigler, L.; Gasser, G.; Schultz, C. et al. Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces pH-domain translocation in cellulo. Nat. Commun. 2016, 7, 10622.CrossRefGoogle Scholar
  55. [55]
    Olson, J. P.; Kwon, H. B.; Takasaki, K. T.; Chiu, C. Q.; Higley, M. J.; Sabatini, B. L.; Ellis-Davies, G. C. R. Optically selective two-photon uncaging of glutamate at 900 nm. J. Am. Chem. Soc. 2013, 135, 5954–5957.CrossRefGoogle Scholar
  56. [56]
    Bochet, C. G. Photolabile protecting groups and linkers. J. Chem. Soc., Perkin Trans. 1 2002, 125–142.Google Scholar
  57. [57]
    Xie, X. Y.; Yang, Y. F.; Yang, Y.; Mei, X. G. Photolabilecaged peptide-conjugated liposomes for siRNA delivery. J. Drug Target. 2015, 23, 789–799.CrossRefGoogle Scholar
  58. [58]
    Yang, Y. F.; Xie, X. Y.; Yang, Y.; Zhang, H.; Mei, X. G. Photo-responsive and NGR-mediated multifunctional nanostructured lipid carrier for tumor-specific therapy. J. Pharm. Sci. 2015, 104, 1328–1339.CrossRefGoogle Scholar
  59. [59]
    Yang, Y.; Yang, Y. F.; Xie, X. Y.; Cai, X. S.; Wang, Z. Y.; Gong, W.; Zhang, H.; Li, Y.; Mei, X. G. A near-infrared two-photon-sensitive peptide-mediated liposomal delivery system. Colloids Surf. B 2015, 128, 427–438.CrossRefGoogle Scholar
  60. [60]
    Yang, Y.; Yang, Y. F.; Xie, X. Y.; Wang, Z. Y.; Gong, W.; Zhang, H.; Li, Y.; Yu, F. L.; Li, Z. P.; Mei, X. G. Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. Biomaterials 2015, 48, 84–96.CrossRefGoogle Scholar
  61. [61]
    Xie, X. Y.; Yang, Y. F.; Yang, Y.; Zhang, H.; Li, Y.; Mei, X. G. A photo-responsive peptide-and asparagine–glycine–arginine (NGR) peptide-mediated liposomal delivery system. Drug Deliv. 2016, 23, 2445–2456.CrossRefGoogle Scholar
  62. [62]
    Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940.CrossRefGoogle Scholar
  63. [63]
    Gu, M.; Gan, X. S.; Kisteman, A.; Xu, M. G. Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media. Appl. Phys. Lett. 2000, 77, 1551–1553.CrossRefGoogle Scholar
  64. [64]
    Shen, J.; Chen, G. Y.; Ohulchanskyy, T. Y.; Kesseli, S. J.; Buchholz, S.; Li, Z. P.; Prasad, P. N.; Han, G. Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4:Yb,Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. Small 2013, 9, 3213–3217.CrossRefGoogle Scholar
  65. [65]
    Zhao, L. Z.; Peng, J. J.; Huang, Q.; Li, C. Y.; Chen, M.; Sun, Y.; Lin, Q. N.; Zhu, L. Y.; Li, F. Y. Near-infrared photoregulated drug release in living tumor tissue via yolkshell upconversion nanocages. Adv. Funct. Mater. 2014, 24, 363–371.CrossRefGoogle Scholar
  66. [66]
    Askes, S. H. C.; Bahreman, A.; Bonnet, S. Activation of a photodissociative ruthenium complex by triplet-triplet annihilation upconversion in liposomes. Angew. Chem., Int. Ed. 2014, 53, 1029–1033.CrossRefGoogle Scholar
  67. [67]
    Chien, Y. H.; Chou, Y. L.; Wang, S. W.; Hung, S. T.; Liau, M. C.; Chao, Y. J.; Su, C. H.; Yeh, C. S. Near-infrared light photocontrolled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo. ACS Nano 2013, 7, 8516–8528.CrossRefGoogle Scholar
  68. [68]
    Hansen, M. B.; van Gaal, E.; Minten, I.; Storm, G.; van Hest, J. C. M.; Löwik, D. W. P. M. Constrained and UV-activatable cell-penetrating peptides for intracellular delivery of liposomes. J. Control. Release 2012, 164, 87–94.CrossRefGoogle Scholar
  69. [69]
    Yuan, Z. F.; Zhao, D.; Yi, X. Q.; Zhuo, R. X.; Li, F. Steric protected and illumination-activated tumor targeting accessory for endowing drug-delivery systems with tumor selectivity. Adv. Funct. Mater. 2014, 24, 1799–1807.CrossRefGoogle Scholar
  70. [70]
    Liu, Q.; Wang, W. P.; Zhan, C. Y.; Yang, T. S.; Kohane, D. S. Enhanced precision of nanoparticle phototargeting in vivo at a safe irradiance. Nano Lett. 2016, 16, 4516–4520.CrossRefGoogle Scholar
  71. [71]
    Yang, Y.; Xie, X. Y.; Yang, Y. F.; Li, Z. P.; Yu, F. L.; Gong, W.; Li, Y.; Zhang, H.; Wang, Z. Y.; Mei, X. G. Polymer nanoparticles modified with photo-and pH-dual-responsive polypeptides for enhanced and targeted cancer therapy. Mol. Pharm. 2016, 13, 1508–1519.CrossRefGoogle Scholar
  72. [72]
    Wang, J.; Shen, H. J.; Huang, C.; Ma, Q. Q.; Tan, Y. N.; Jiang, F. L.; Ma, C.; Yuan, Q. Highly efficient and multidimensional extraction of targets from complex matrices using aptamerdriven recognition. Nano Res. 2017, 10, 145–156.CrossRefGoogle Scholar
  73. [73]
    Li, L. L.; Tong, R.; Chu, H. H.; Wang, W. P.; Langer, R.; Kohane, D. S. Aptamer photoregulation in vivo. Proc. Natl. Acad. Sci. USA 2014, 111, 17099–17103.CrossRefGoogle Scholar
  74. [74]
    Yang, Y.; Liu, J. J.; Sun, X. Q.; Feng, L. Z.; Zhu, W. W.; Liu, Z.; Chen, M. W. Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Res. 2016, 9, 139–148.CrossRefGoogle Scholar
  75. [75]
    Barhoumi, A.; Wang, W. P.; Zurakowski, D.; Langer, R. S.; Kohane, D. S. Photothermally targeted thermosensitive polymer-masked nanoparticles. Nano Lett. 2014, 14, 3697–3701.CrossRefGoogle Scholar
  76. [76]
    Li, J.; Sun, C. Y.; Tao, W.; Cao, Z. Y.; Qian, H. S.; Yang, X. Z.; Wang, J. Photoinduced PEG deshielding from ROSsensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery. Biomaterials 2018, 170, 147–155.CrossRefGoogle Scholar
  77. [77]
    He, C. B.; Hu, Y. P.; Yin, L. C.; Tang, C.; Yin, C. H. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657–3666.CrossRefGoogle Scholar
  78. [78]
    Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011, 6, 815–823.CrossRefGoogle Scholar
  79. [79]
    Tong, R.; Chiang, H. H.; Kohane, D. S. Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proc. Natl. Acad. Sci. USA 2013, 110, 19048–19053.CrossRefGoogle Scholar
  80. [80]
    Tacar, O.; Sriamornsak, P.; Dass, C. R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170.CrossRefGoogle Scholar
  81. [81]
    Qiu, L. P.; Chen, T.; Öçsoy, I.; Yasun, E.; Wu, C. C.; Zhu, G. Z.; You, M. X.; Han, D.; Jiang, J. H.; Yu, R. Q. et al. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett. 2015, 15, 457–463.CrossRefGoogle Scholar
  82. [82]
    Ojha, T.; Pathak, V.; Shi, Y.; Hennink, W. E.; Moonen, C. T. W.; Storm, G.; Kiessling, F.; Lammers, T. Pharmacological and physical vessel modulation strategies to improve EPRmediated drug targeting to tumors. Adv. Drug Deliv. Rev. 2017, 119, 44–60.CrossRefGoogle Scholar
  83. [83]
    Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Int. 1998, 90, 889–905.CrossRefGoogle Scholar
  84. [84]
    Zhen, Z. P.; Tang, W.; Chuang, Y. J.; Todd, T.; Zhang, W. Z.; Lin, X.; Niu, G.; Liu, G.; Wang, L. C.; Pan, Z. W. et al. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles. ACS Nano 2014, 8, 6004–6013.CrossRefGoogle Scholar
  85. [85]
    Gao, W. D.; Wang, Z. H.; Lv, L. W.; Yin, D. Y.; Chen, D.; Han, Z. H.; Ma, Y.; Zhang, M.; Yang, M.; Gu, Y. Q. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 2016, 6, 1131–1144.CrossRefGoogle Scholar
  86. [86]
    Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L. T.; Choyke, P. L.; Kobayashi, H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011, 17, 1685–1691.CrossRefGoogle Scholar
  87. [87]
    Kong, G.; Braun, R. D.; Dewhirst, M. W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res. 2001, 61, 3027–3032.Google Scholar
  88. [88]
    Gormley, A. J.; Larson, N.; Banisadr, A.; Robinson, R.; Frazier, N.; Ray, A.; Ghandehari, H. Plasmonic photothermal therapy increases the tumor mass penetration of HPMA copolymers. J. Control. Release 2013, 166, 130–138.CrossRefGoogle Scholar
  89. [89]
    Frazier, N.; Robinson, R.; Ray, A.; Ghandehari, H. Effects of heating temperature and duration by gold nanorod mediated plasmonic photothermal therapy on copolymer accumulation in tumor tissue. Mol. Pharm. 2015, 12, 1605–1614.CrossRefGoogle Scholar
  90. [90]
    Velema, W. A.; Szymanski, W.; Feringa, B. L. Photopharmacology: Beyond proof of principle. J. Am. Chem. Soc. 2014, 136, 2178–2191.CrossRefGoogle Scholar
  91. [91]
    Lal, S.; Clare, S. E.; Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008, 41, 1842–1851.CrossRefGoogle Scholar
  92. [92]
    Yang, Y. M.; Mu, J.; Xing, B. G. Photoactivated drug delivery and bioimaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1408.CrossRefGoogle Scholar
  93. [93]
    Fournier, L.; Aujard, I.; Le Saux, T.; Maurin, S.; Beaupierre, S.; Baudin, J. B.; Jullien, L. Coumarinylmethyl caging groups with redshifted absorption. Chem.—Eur. J. 2013, 19, 17494–17507.CrossRefGoogle Scholar
  94. [94]
    Gandioso, A.; Cano, M.; Massaguer, A.; Marchán, V. A green light-triggerable RGD peptide for photocontrolled targeted drug delivery: Synthesis and photolysis studies. J. Org. Chem. 2016, 81, 11556–11564.CrossRefGoogle Scholar
  95. [95]
    Huang, L.; Zhao, Y.; Zhang, H.; Huang, K.; Yang, J. Y.; Han, G. Expanding anti-stokes shifting in triplet-triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew. Chem., Int. Ed. 2017, 56, 14400–14404.CrossRefGoogle Scholar
  96. [96]
    Liu, X. S.; Chen, Y. J.; Li, H.; Huang, N.; Jin, Q.; Ren, K. F.; Ji, J. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 2013, 7, 6244–6257.CrossRefGoogle Scholar
  97. [97]
    Shiraishi, Y.; Tanaka, K.; Shirakawa, E.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Light-triggered selfassembly of gold nanoparticles based on photoisomerization of spirothiopyran. Angew. Chem., Int. Ed. 2013, 52, 8304–8308.CrossRefGoogle Scholar
  98. [98]
    Au, K. M.; Chen, M.; Armes, S. P.; Zheng, N. F. Near-infrared light-triggered irreversible aggregation of poly(oligo(ethylene glycol) methacrylate)-stabilised polypyrrole nanoparticles under biologically relevant conditions. Chem. Commun. 2013, 49, 10525–10527.CrossRefGoogle Scholar
  99. [99]
    Klinger, D.; Landfester, K. Photo-sensitive pmma microgels: Light-triggered swelling and degradation. Soft Matter 2011, 7, 1426–1440.CrossRefGoogle Scholar
  100. [100]
    Xing, P. Y.; Chen, H. Z.; Bai, L. Y.; Zhao, Y. L. Phototriggered transformation from vesicles to branched nanotubes fabricated by a cholesterol-appended cyanostilbene. Chem. Commun. 2015, 51, 9309–9312.CrossRefGoogle Scholar
  101. [101]
    Li, D. D.; Ma, Y. C.; Du, J. Z.; Tao, W.; Du, X. J.; Yang, X. Z.; Wang, J. Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy. Nano Lett. 2017, 17, 2871–2878.CrossRefGoogle Scholar
  102. [102]
    Lin, Q. N.; Bao, C. Y.; Yang, Y. L.; Liang, Q. N.; Zhang, D. S.; Cheng, S. Y.; Zhu, L. Y. Highly discriminating photorelease of anticancer drugs based on hypoxia activatable phototrigger conjugated chitosan nanoparticles. Adv. Mater. 2013, 25, 1981–1986.CrossRefGoogle Scholar
  103. [103]
    Lv, W.; Yang, T. S.; Yu, Q.; Zhao, Q.; Zhang, K. Y.; Liang, H.; Liu, S. J.; Li, F. Y.; Huang, W. A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy. Adv. Sci. 2015, 2, 1500107.CrossRefGoogle Scholar
  104. [104]
    Tran, S.; DeGiovanni, P. J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med. 2017, 6, 44.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dr. Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative MedicineThe University of Hong KongHong KongChina
  2. 2.Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina

Personalised recommendations