Effect of matrix-nanoparticle interactions on recognition of aryldiazonium nanoparticle-imprinted matrices

Abstract

The selective recognition of nanoparticles (NPs) can be achieved by nanoparticle-imprinted matrices (NAIMs), where NPs are imprinted in a matrix followed by their removal to form voids that can reuptake the original NPs. The recognition depends on supramolecular interactions between the matrix and the shell of the NPs, as well as on the geometrical suitability of the imprinted voids to accommodate the NPs. Here, gold NPs stabilized with citrate (AuNPs-cit) were preadsorbed onto a conductive surface followed by electrografting of p-aryldiazonium salts (ADS) with different functional groups. The thickness of the matrix was carefully controlled by altering the scan number. The AuNPs-cit were removed by electrochemical dissolution. The recognition of the NAIMs was determined by the reuptake of the original AuNPs-cit by the imprinted voids. We found that the recognition efficiency is a function of the thickness of the NAIM layer and is sensitive to the chemical structure of the matrix. Specifically, a subtle change of the functional group of the p-aryldiazonium building block, which was varied from an ether to an ester, significantly affected the recognition of the NPs.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Behra, R.; Krug, H. Nanoecotoxicology: Nanoparticles at large. Nat. Nanotechnol. 2008, 3, 253–254.

    Article  Google Scholar 

  2. [2]

    Colvin, V. L. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 2003, 21, 1166–1170.

    Article  Google Scholar 

  3. [3]

    Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small 2008, 4, 26–49.

    Article  Google Scholar 

  4. [4]

    McCall, M. J. Environmental, health and safety issues: Nanoparticles in the real world. Nat. Nanotechnol. 2011, 6, 613–614.

    Article  Google Scholar 

  5. [5]

    Sajid, M.; Ilyas, M.; Basheer, C.; Tariq, M.; Daud, M.; Baig, N.; Shehzad, F. Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollut. Res. 2015, 22, 4122–4143.

    Article  Google Scholar 

  6. [6]

    Hassellöv, M.; Readman, J. W.; Ranville, J. F.; Tiede, K. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 2008, 17, 344–361.

    Article  Google Scholar 

  7. [7]

    Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009, 5, 2067–2076.

    Article  Google Scholar 

  8. [8]

    Griffitt, R. J.; Weil, R.; Hyndman, K. A.; Denslow, N. D.; Powers, K.; Taylor, D.; Barber, D. S. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol. 2007, 41, 8178–8186.

    Article  Google Scholar 

  9. [9]

    Sun, N.; Johnson, J.; Stack, M. S.; Szajko, J.; Sander, C.; Rebuyon, R.; Deatsch, A.; Easton, J.; Tanner, C. E.; Ruggiero, S. T. Nanoparticle analysis of cancer cells by light transmission spectroscopy. Anal. Biochem. 2015, 484, 58–65.

    Article  Google Scholar 

  10. [10]

    Behzadi, S.; Ghasemi, F.; Ghalkhani, M.; Ashkarran, A. A.; Akbari, S. M.; Pakpour, S.; Hormozi-Nezhad, M. R.; Jamshidi, Z.; Mirsadeghi, S.; Dinarvand, R. et al. Determination of nanoparticles using UV-Vis spectra. Nanoscale 2015, 7, 5134–5139.

    Article  Google Scholar 

  11. [11]

    Slyusarenko, K.; Abécassis, B.; Davidson, P.; Constantin, D. Morphology of gold nanoparticles determined by full-curve fitting of the light absorption spectrum. Comparison with X-ray scattering and electron microscopy data. Nanoscale 2014, 6, 13527–13534.

    Article  Google Scholar 

  12. [12]

    Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 2007, 79, 4215–4221.

    Article  Google Scholar 

  13. [13]

    Jarausch, K.; Leonard, D. N. Three-dimensional electron microscopy of individual nanoparticles. J. Electron Microsc. 2009, 58, 175–183.

    Article  Google Scholar 

  14. [14]

    Wang, Z. L. Transmission electron microscopy of shapecontrolled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.

    Article  Google Scholar 

  15. [15]

    Aleksenskii, A. E.; Shvidchenko, A. V.; Eidel'man, E. D. The applicability of dynamic light scattering to determination of nanoparticle dimensions in sols. Tech. Phys. Lett. 2012, 38, 1049–1052.

    Article  Google Scholar 

  16. [16]

    Kato, H.; Suzuki, M.; Fujita, K.; Horie, M.; Endoh, S.; Yoshida, Y.; Iwahashi, H.; Takahashi, K.; Nakamura, A.; Kinugasa, S. Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicol. in Vitro 2009, 23, 927–934.

    Article  Google Scholar 

  17. [17]

    Murdock, R. C.; Braydich-Stolle, L.; Schrand, A. M.; Schlager, J. J.; Hussain, S. M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 2008, 101, 239–253.

    Article  Google Scholar 

  18. [18]

    Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    Article  Google Scholar 

  19. [19]

    Tschulik, K.; Haddou, B.; Omanović, D.; Rees, N. V.; Compton, R. G. Coulometric sizing of nanoparticles: Cathodic and anodic impact experiments open two independent routes to electrochemical sizing of Fe3O4 nanoparticles. Nano Res. 2013, 6, 836–841.

    Article  Google Scholar 

  20. [20]

    Zhou, Y.-G.; Rees, N. V.; Compton, R. G. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew. Chem. 2011, 123, 4305–4307.

    Article  Google Scholar 

  21. [21]

    Henriquez, R. R.; Ito, T.; Sun, L.; Crooks, R. M. The resurgence of Coulter counting for analyzing nanoscale objects. Analyst 2004, 129, 478–482.

    Article  Google Scholar 

  22. [22]

    Xiao, X. Y.; Bard, A. J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 2007, 129, 9610–9612.

    Article  Google Scholar 

  23. [23]

    Zhou, Y.-G.; Rees, N. V.; Compton, R. G. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew. Chem., Int. Ed. 2011, 50, 4219–4221.

    Article  Google Scholar 

  24. [24]

    Attota, R.; Kavuri, P. P.; Kang, H.; Kasica, R.; Chen, L. Nanoparticle size determination using optical microscopes. Appl. Phys. Lett. 2014, 105, 163105.

    Article  Google Scholar 

  25. [25]

    Cascio, C.; Gilliland, D.; Rossi, F.; Calzolai, L.; Contado, C. Critical experimental evaluation of key methods to detect, size and quantify nanoparticulate silver. Anal. Chem. 2014, 86, 12143–12151.

    Article  Google Scholar 

  26. [26]

    Chon, B.; Briggman, K.; Hwang, J. Single molecule confocal fluorescence lifetime correlation spectroscopy for accurate nanoparticle size determination. Phys. Chem. Chem. Phys. 2014, 16, 13418–13425.

    Article  Google Scholar 

  27. [27]

    Gomez, M. V.; Guerra, J.; Myers, V. S.; Crooks, R. M.; Velders, A. H. Nanoparticle size determination by 1H NMR spectroscopy. J. Am. Chem. Soc. 2009, 131, 14634–14635.

    Article  Google Scholar 

  28. [28]

    McKenzie, L. C.; Haben, P. M.; Kevan, S. D.; Hutchison, J. E. Determining nanoparticle size in real time by small-angle X-ray scattering in a microscale flow system. J. Phys. Chem. C 2010, 114, 22055–22063.

    Article  Google Scholar 

  29. [29]

    Toh, H. S.; Compton, R. G. “Nano-impacts”: An electrochemical technique for nanoparticle sizing in optically opaque solutions. ChemistryOpen 2015, 4, 261–263.

    Article  Google Scholar 

  30. [30]

    Fang, Y. M.; Wang, H.; Yu, H.; Liu, X. W.; Wang, W.; Chen, H. Y.; Tao, N. J. Plasmonic imaging of electrochemical reactions of single nanoparticles. Acc. Chem. Res. 2016, 49, 2614–2624.

    Article  Google Scholar 

  31. [31]

    Qiu, D. F.; Wang, S.; Zheng, Y. Q.; Deng, Z. X. One at a time: Counting single-nanoparticle/electrode collisions for accurate particle sizing by overcoming the instability of gold nanoparticles under electrolytic conditions. Nanotechnology 2013, 24, 505707.

    Article  Google Scholar 

  32. [32]

    Wang, D. P.; Yordanov, S.; Paroor, H. M.; Mukhopadhyay, A.; Li, C. Y.; Butt, H.-J.; Koynov, K. Probing diffusion of single nanoparticles at water-oil interfaces. Small 2011, 7, 3502–3507.

    Article  Google Scholar 

  33. [33]

    Bruchiel-Spanier, N.; Mandler, D. Nanoparticle-imprinted polymers: Shell-selective recognition of Au nanoparticles by imprinting using the Langmuir–Blodgett method. ChemElectroChem 2015, 2, 795–802.

    Article  Google Scholar 

  34. [34]

    Hitrik, M.; Pisman, Y.; Wittstock, G.; Mandler, D. Speciation of nanoscale objects by nanoparticle imprinted matrices. Nanoscale 2016, 8, 13934–13943.

    Article  Google Scholar 

  35. [35]

    Kraus-Ophir, S.; Witt, J.; Wittstock, G.; Mandler, D. Nanoparticle-imprinted polymers for size-selective recognition of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 294–298.

    Article  Google Scholar 

  36. [36]

    Witt, J.; Mandler, D.; Wittstock, G. Nanoparticle-imprinted matrices as sensing layers for size-selective recognition of silver nanoparticles. ChemElectroChem 2016, 3, 2116–2124.

    Article  Google Scholar 

  37. [37]

    Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O' Mahony, J.; Whitcombe, M. J. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J. Mol. Recognit. 2006, 19, 106–180.

    Article  Google Scholar 

  38. [38]

    Haupt, K. Molecularly imprinted polymers in analytical chemistry. Analyst 2001, 126, 747–756.

    Article  Google Scholar 

  39. [39]

    Pichon, V.; Chapuis-Hugon, F. Role of molecularly imprinted polymers for selective determination of environmental pollutants—A review. Anal. Chim. Acta 2008, 622, 48–61.

    Article  Google Scholar 

  40. [40]

    Tokonami, S.; Shiigi, H.; Nagaoka, T. Review: Micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications. Anal. Chim. Acta 2009, 641, 7–13.

    Article  Google Scholar 

  41. [41]

    Birnbaumer, G. M.; Lieberzeit, P. A.; Richter, L.; Schirhagl, R.; Milnera, M.; Dickert, F. L.; Bailey, A.; Ertl, P. Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab Chip 2009, 9, 3549–3556.

    Article  Google Scholar 

  42. [42]

    Cai, W.; Li, H.-H.; Lu, Z.-X.; Collinson, M. M. Bacteria assisted protein imprinting in sol-gel derived films. Analyst 2018, 143, 555–563.

    Article  Google Scholar 

  43. [43]

    Cutivet, A.; Schembri, C.; Kovensky, J.; Haupt, K. Molecularly imprinted microgels as enzyme inhibitors. J. Am. Chem. Soc. 2009, 131, 14699–14702.

    Article  Google Scholar 

  44. [44]

    Mooste, M.; Kibena, E.; Kozlova, J.; Marandi, M.; Matisen, L.; Niilisk, A.; Sammelselg, V.; Tammeveski, K. Electrografting and morphological studies of chemical vapour deposition grown graphene sheets modified by electroreduction of aryldiazonium salts. Electrochim. Acta 2015, 161, 195–204.

    Article  Google Scholar 

  45. [45]

    Mahouche-Chergui, S.; Gam-Derouich, S.; Mangeney, C.; Chehimi, M. M. Aryl diazonium salts: A new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem. Soc. Rev. 2011, 40, 4143–4166.

    Article  Google Scholar 

  46. [46]

    Menanteau, T.; Dias, M.; Levillain, E.; Downard, A. J.; Breton, T. Electrografting via diazonium chemistry: The key role of the aryl substituent in the layer growth mechanism. J. Phys. Chem. C 2016, 120, 4423–4429.

    Article  Google Scholar 

  47. [47]

    Trusova, M. E.; Kutonova, K. V.; Kurtukov, V. V.; Filimonov, V. D.; Postnikov, P. S. Arenediazonium salts transformations in water media: Coming round to origins. Resource-Efficient Technologies 2016, 2, 36–42.

    Article  Google Scholar 

  48. [48]

    Saby, C.; Ortiz, B.; Champagne, G. Y.; Bélanger, D. Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups. Langmuir 1997, 13, 6805–6813.

    Article  Google Scholar 

  49. [49]

    Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Israeli Ministry of Science and Technology (No. 3-13575). L. D. would like to acknowledge the Israeli Ministry of Science and Technology. S. D. would like to acknowledge the Israeli Ministry of Energy. The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology of the Hebrew University is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Mandler.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bruchiel-Spanier, N., Dery, L., Tal, N. et al. Effect of matrix-nanoparticle interactions on recognition of aryldiazonium nanoparticle-imprinted matrices. Nano Res. 12, 265–271 (2019). https://doi.org/10.1007/s12274-018-2129-2

Download citation

Keywords

  • diazonium salt
  • nanoparticles
  • imprinting
  • electrochemistry
  • focused ion beam