Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis


The effective drug treatment of rheumatoid arthritis (RA) is hindered by poor delivery efficiency to the diseased site and the serious side effects caused by wide-spread drug distribution. Traditional drug-targeting strategies, such as ligand modification, are complex, laborious, and inefficient. Inspired by the intrinsic relationship between platelets and RA, platelet-mimetic nanoparticles (PNPs) were developed for targeted drug delivery in RA. Through platelet receptor-mediated adhesion, an intact platelet membrane was coated onto poly (lactic-co-glycolic acid) nanoparticles, endowing the resulting PNPs with various functional receptors. By coating with platelet membranes, the nanoparticles were stabilized and had a better circulation profile, providing a benefit for passive targeting. In vitro binding of PNPs to inflamed endothelium, and in vivo accumulation in joints of a collagen-induced arthritis (CIA) mouse model of RA were significantly improved via P-selectin and GVPI recognition, indicating that the PNPs could effectively target to RA tissues through multiple mechanisms, similar to natural platelets. Moreover, FK506, a model drug, was loaded into the PNPs and used to treat RA. Pharmacodynamic studies demonstrated that the FK506-PNPs had a notable anti-arthritic effect in CIA mice. This study provides a new biomimetic targeting strategy with great potential for the treatment of RA.

This is a preview of subscription content, access via your institution.


  1. [1]

    Mitragotri, S.; Yoo, J. W. Designing micro-and nano-particles for treating rheumatoid arthritis. Arch. Pharm. Res. 2011, 34, 1887–1897.

    Article  Google Scholar 

  2. [2]

    Scott, D. L.; Wolfe, F.; Huizinga, T. W. J. Rheumatoid arthritis. Lancet 2010, 376, 1094–1108.

    Article  Google Scholar 

  3. [3]

    Yuan, F.; Quan, L. D.; Cui, L.; Goldring, S. R.; Wang, D. Development of macromolecular prodrug for rheumatoid arthritis. Adv. Drug Deliv. Rev. 2012, 64, 1205–1219.

    Article  Google Scholar 

  4. [4]

    Cloutier, N.; Paré, A.; Farndale, R. W.; Schumacher, H. R.; Nigrovic, P. A.; Lacroix, S.; Boilard, E. Platelets can enhance vascular permeability. Blood 2012, 120, 1334–1343.

    Article  Google Scholar 

  5. [5]

    Chandrasekar, D.; Sistla, R.; Ahmad, F. J.; Khar, R. K.; Diwan, P. V. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials 2007, 28, 504–512.

    Article  Google Scholar 

  6. [6]

    Heo, R.; Park, J. S.; Jang, H. J.; Kim, S. H.; Shin, J. M.; Suh, Y. D.; Jeong, J. H.; Jo, D. G.; Park, J. H. Hyaluronan nanoparticles bearing γ-secretase inhibitor: In vivo therapeutic effects on rheumatoid arthritis. J. Control. Release 2014, 192, 295–300.

    Article  Google Scholar 

  7. [7]

    Lee, S. M.; Kim, H. J.; Ha, Y. J.; Park, Y. N.; Lee, S. K.; Park, Y. B.; Yoo, K. H. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 2013, 7, 50–57.

    Article  Google Scholar 

  8. [8]

    Yang, M. D.; Feng, X. R.; Ding, J. X.; Chang, F.; Chen, X. S. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Release 2017, 252, 108–124.

    Article  Google Scholar 

  9. [9]

    Luk, B. T.; Zhang, L. F. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release 2015, 220, 600–607.

    Article  Google Scholar 

  10. [10]

    Hu, C. M. J.; Fang, R. H.; Copp, J.; Luk, B. T.; Zhang, L. F. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 2013, 8, 336–340.

    Article  Google Scholar 

  11. [11]

    Su, J. H.; Sun, H. P.; Meng, Q. S.; Yin, Q.; Tang, S.; Zhang, P. C.; Chen, Y.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Long circulation red-blood-cell-mimetic nanoparticles with peptideenhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater. 2016, 26, 1243–1252.

    Article  Google Scholar 

  12. [12]

    Parodi, A.; Quattrocchi, N.; van de Ven, A. L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J. O.; Brown, B. S.; Khaled, S. Z.; Yazdi, I. K.; Enzo, M. V. et al. Biomimetic functionalization with leukocyte membranes imparts cell like functions to synthetic particles. Nat. Nanotechnol. 2013, 8, 61–68.

    Article  Google Scholar 

  13. [13]

    Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

    Article  Google Scholar 

  14. [14]

    Hu, Q. Y.; Sun, W. J.; Qian, C. G.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 2015, 27, 7043–7050.

    Article  Google Scholar 

  15. [15]

    Hu, Q. Y.; Bomba, H. N.; Gu, Z. Engineering plateletmimicking drug delivery vehicles. Front. Chem. Sci. Eng. 2017, 11, 624–632.

    Article  Google Scholar 

  16. [16]

    Sun, H. P.; Su, J. H.; Meng, Q. S.; Yin, Q.; Chen, L. L.; Gu, W. W.; Zhang, Z. W.; Yu, H. J.; Zhang, P. C.; Wang, S. L. et al. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv. Funct. Mater. 2017, 27, 1604300.

    Article  Google Scholar 

  17. [17]

    Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.

    Article  Google Scholar 

  18. [18]

    George, J. N. Platelets. Lancet 2000, 355, 1531–1539.

    Article  Google Scholar 

  19. [19]

    Ho-Tin-Noé, B.; Demers, M.; Wagner, D. D. How platelets safeguard vascular integrity. J. Thromb. Haemost. 2011, 9, 56–65.

    Article  Google Scholar 

  20. [20]

    Boilard, E.; Blanco, P.; Nigrovic, P. A. Platelets: Active players in the pathogenesis of arthritis and SLE. Nat. Rev. Rheumatol. 2012, 8, 534–542.

    Article  Google Scholar 

  21. [21]

    Boilard, E.; Nigrovic, P. A.; Larabee, K.; Watts, G. F. M.; Coblyn, J. S.; Weinblatt, M. E.; Massarotti, E. M.; Remold-O’Donnell, E.; Farndale, R. W.; Ware, J. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010, 327, 580–583.

    Article  Google Scholar 

  22. [22]

    Haynes, B. F.; Hale, L. P.; Patton, K. L.; Martin, M. E.; McCallum, R. M. Measurement of an adhesion molecule as an indicator of inflammatory disease activity: Up-regulation of the receptor for hyaluronate (CD44) in rheumatoid arthritis. Arthritis Rheum. 1991, 34, 1434–1443.

    Article  Google Scholar 

  23. [23]

    Nedvetzki, S.; Walmsley, M.; Alpert, E.; Williams, R. O.; Feldmann, M.; Naor, D. CD44 involvement in experimental collagen-induced arthritis (CIA). J. Autoimmun. 1999, 13, 39–47.

    Article  Google Scholar 

  24. [24]

    Johnson, B. A.; Haines, G. K.; Harlow, L. A.; Koch, A. E. Adhesion molecule expression in human synovial tissue. Arthritis Rheum. 1993, 36, 137–146.

    Article  Google Scholar 

  25. [25]

    Stone, J. P.; Wagner, D. D. P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J. Clin. Invest. 1993, 92, 804–813.

    Article  Google Scholar 

  26. [26]

    Schett, G.; Gravallese, E. Bone erosion in rheumatoid arthritis: Mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol. 2012, 8, 656–664.

    Article  Google Scholar 

  27. [27]

    Brand, D. D.; Latham, K. A.; Rosloniec, E. F. Collagen induced arthritis. Nat. Protoc. 2007, 2, 1269–1275.

    Article  Google Scholar 

  28. [28]

    Quan, L. D.; Zhang, Y. J.; Crielaard, B. J.; Dusad, A.; Lele, S. M.; Rijcken, C. J. F.; Metselaar, J. M.; Kostková, H.; Etrych, T.; Ulbrich, K. et al. Nanomedicines for inflammatory arthritis: Head-to-head comparison of glucocorticoidcontaining polymers, micelles, and liposomes. ACS Nano 2014, 8, 458–466.

    Article  Google Scholar 

  29. [29]

    Kim, M. J.; Park, J. S.; Lee, S. J.; Jang, J.; Park, J. S.; Back, S. H.; Bahn, G.; Park, J. H.; Kang, Y. M.; Kim, S. H. et al. Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy. J. Control. Release 2015, 216, 140–148.

    Article  Google Scholar 

  30. [30]

    Allen, T. M.; Murray, L.; MacKeigan, S.; Shah, M. Chronic liposome administration in mice: Effects on reticuloendothelial function and tissue distribution. J. Pharmacol. Exp. Ther. 1984, 229, 267–275.

    Google Scholar 

  31. [31]

    Grozovsky, R.; Hoffmeister, K. M.; Falet, H. Novel clearance mechanisms of platelets. Curr. Opin. Hematol. 2010, 17, 585–589.

    Article  Google Scholar 

  32. [32]

    Dehaini, D.; Wei, X. L.; Fang, R. H.; Masson, S.; Angsantikul, P.; Luk, B. T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A. V. et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 2017, 29, 1606209.

    Article  Google Scholar 

  33. [33]

    Poduval, P.; Sillat, T.; Beklen, A.; Kouri, V. P.; Virtanen, I.; Konttinen, Y. T. Type IV collagen α-chain composition in synovial lining from trauma patients and patients with rheumatoid arthritis. Arthritis Rheum. 2007, 56, 3959–3967.

    Article  Google Scholar 

  34. [34]

    Rosloniec, E. F.; Cremer, M.; Kang, A. H.; Myers, L. K.; Brand, D. D. Collagen-induced arthritis. Curr. Protocols Immunol. 2010, 89, 15.5.1–15.5.25.

    Google Scholar 

  35. [35]

    Schwartz, B. D.; Mengle-Gaw, L. J. Tacrolimus for the treatment of rheumatoid arthritis: Are broad-based immunosuppressants still valid? Future Rheumatol. 2006, 1, 661–672.

    Article  Google Scholar 

  36. [36]

    Aryal, S.; Hu, C. M. J.; Fang, R. H.; Dehaini, D.; Carpenter, C.; Zhang, D. E.; Zhang, L. F. Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine 2013, 8, 1271–1280.

    Article  Google Scholar 

  37. [37]

    Sintnicolaas, K.; van Marwijk Kooij, M.; van Prooijen, H. C.; van Dijk, B. A.; van Putten, W. L.; Claas, F. H.; Novotny, V. M.; Brand, A. Leukocyte depletion of random singledonor platelet transfusions does not prevent secondary human leukocyte antigen-alloimmunization and refractoriness: A randomized prospective study. Blood 1995, 85, 824–828.

    Google Scholar 

  38. [38]

    Hu, Q. Y.; Qian, C. G.; Sun, W. J.; Wang, J. Q.; Chen, Z. W.; Bomba, H. N.; Xin, H. L.; Shen, Q. D.; Gu, Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. 2016, 28, 9573–9580.

    Article  Google Scholar 

  39. [39]

    Hu, Q. Y.; Sun, W. J.; Qian, C. G.; Bomba, H. N.; Xin, H. L.; Gu, Z. Relay drug delivery for amplifying targeting signal and enhancing anticancer efficacy. Adv. Mater. 2017, 29, 1605803.

    Article  Google Scholar 

  40. [40]

    Wang, C.; Sun, W. J.; Ye, Y. Q.; Hu, Q. Y.; Bomba, H. N.; Gu, Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 2017, 1, 0011.

    Article  Google Scholar 

Download references


We acknowledge the financial support of the National Natural Science Foundation of China (Nos. 81690263, 81472757, 81361140344, 81773283, and 81773911). Thanks are given to Dr. Yang Yang from Shanghai University of Traditional Chinese Medicine for his kind help with the CIA model.

Author information



Corresponding authors

Correspondence to Zhiqing Pang or Jianxin Wang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Y., Li, R., Liang, J. et al. Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis. Nano Res. 11, 6086–6101 (2018). https://doi.org/10.1007/s12274-018-2126-5

Download citation


  • biomimetic nanoparticles
  • platelet membrane
  • rheumatoid arthritis
  • targeted drug delivery