Nano Research

, Volume 11, Issue 11, pp 6086–6101 | Cite as

Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis

  • Yuwei He
  • Ruixiang Li
  • Jianming Liang
  • Ying Zhu
  • Shuya Zhang
  • Zicong Zheng
  • Jing Qin
  • Zhiqing PangEmail author
  • Jianxin WangEmail author
Research Article


The effective drug treatment of rheumatoid arthritis (RA) is hindered by poor delivery efficiency to the diseased site and the serious side effects caused by wide-spread drug distribution. Traditional drug-targeting strategies, such as ligand modification, are complex, laborious, and inefficient. Inspired by the intrinsic relationship between platelets and RA, platelet-mimetic nanoparticles (PNPs) were developed for targeted drug delivery in RA. Through platelet receptor-mediated adhesion, an intact platelet membrane was coated onto poly (lactic-co-glycolic acid) nanoparticles, endowing the resulting PNPs with various functional receptors. By coating with platelet membranes, the nanoparticles were stabilized and had a better circulation profile, providing a benefit for passive targeting. In vitro binding of PNPs to inflamed endothelium, and in vivo accumulation in joints of a collagen-induced arthritis (CIA) mouse model of RA were significantly improved via P-selectin and GVPI recognition, indicating that the PNPs could effectively target to RA tissues through multiple mechanisms, similar to natural platelets. Moreover, FK506, a model drug, was loaded into the PNPs and used to treat RA. Pharmacodynamic studies demonstrated that the FK506-PNPs had a notable anti-arthritic effect in CIA mice. This study provides a new biomimetic targeting strategy with great potential for the treatment of RA.


biomimetic nanoparticles platelet membrane rheumatoid arthritis targeted drug delivery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the financial support of the National Natural Science Foundation of China (Nos. 81690263, 81472757, 81361140344, 81773283, and 81773911). Thanks are given to Dr. Yang Yang from Shanghai University of Traditional Chinese Medicine for his kind help with the CIA model.

Supplementary material

12274_2018_2126_MOESM1_ESM.pdf (620 kb)
Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis


  1. [1]
    Mitragotri, S.; Yoo, J. W. Designing micro-and nano-particles for treating rheumatoid arthritis. Arch. Pharm. Res. 2011, 34, 1887–1897.CrossRefGoogle Scholar
  2. [2]
    Scott, D. L.; Wolfe, F.; Huizinga, T. W. J. Rheumatoid arthritis. Lancet 2010, 376, 1094–1108.CrossRefGoogle Scholar
  3. [3]
    Yuan, F.; Quan, L. D.; Cui, L.; Goldring, S. R.; Wang, D. Development of macromolecular prodrug for rheumatoid arthritis. Adv. Drug Deliv. Rev. 2012, 64, 1205–1219.CrossRefGoogle Scholar
  4. [4]
    Cloutier, N.; Paré, A.; Farndale, R. W.; Schumacher, H. R.; Nigrovic, P. A.; Lacroix, S.; Boilard, E. Platelets can enhance vascular permeability. Blood 2012, 120, 1334–1343.CrossRefGoogle Scholar
  5. [5]
    Chandrasekar, D.; Sistla, R.; Ahmad, F. J.; Khar, R. K.; Diwan, P. V. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials 2007, 28, 504–512.CrossRefGoogle Scholar
  6. [6]
    Heo, R.; Park, J. S.; Jang, H. J.; Kim, S. H.; Shin, J. M.; Suh, Y. D.; Jeong, J. H.; Jo, D. G.; Park, J. H. Hyaluronan nanoparticles bearing γ-secretase inhibitor: In vivo therapeutic effects on rheumatoid arthritis. J. Control. Release 2014, 192, 295–300.CrossRefGoogle Scholar
  7. [7]
    Lee, S. M.; Kim, H. J.; Ha, Y. J.; Park, Y. N.; Lee, S. K.; Park, Y. B.; Yoo, K. H. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 2013, 7, 50–57.CrossRefGoogle Scholar
  8. [8]
    Yang, M. D.; Feng, X. R.; Ding, J. X.; Chang, F.; Chen, X. S. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Release 2017, 252, 108–124.CrossRefGoogle Scholar
  9. [9]
    Luk, B. T.; Zhang, L. F. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release 2015, 220, 600–607.CrossRefGoogle Scholar
  10. [10]
    Hu, C. M. J.; Fang, R. H.; Copp, J.; Luk, B. T.; Zhang, L. F. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 2013, 8, 336–340.CrossRefGoogle Scholar
  11. [11]
    Su, J. H.; Sun, H. P.; Meng, Q. S.; Yin, Q.; Tang, S.; Zhang, P. C.; Chen, Y.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Long circulation red-blood-cell-mimetic nanoparticles with peptideenhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater. 2016, 26, 1243–1252.CrossRefGoogle Scholar
  12. [12]
    Parodi, A.; Quattrocchi, N.; van de Ven, A. L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J. O.; Brown, B. S.; Khaled, S. Z.; Yazdi, I. K.; Enzo, M. V. et al. Biomimetic functionalization with leukocyte membranes imparts cell like functions to synthetic particles. Nat. Nanotechnol. 2013, 8, 61–68.CrossRefGoogle Scholar
  13. [13]
    Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.CrossRefGoogle Scholar
  14. [14]
    Hu, Q. Y.; Sun, W. J.; Qian, C. G.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 2015, 27, 7043–7050.CrossRefGoogle Scholar
  15. [15]
    Hu, Q. Y.; Bomba, H. N.; Gu, Z. Engineering plateletmimicking drug delivery vehicles. Front. Chem. Sci. Eng. 2017, 11, 624–632.CrossRefGoogle Scholar
  16. [16]
    Sun, H. P.; Su, J. H.; Meng, Q. S.; Yin, Q.; Chen, L. L.; Gu, W. W.; Zhang, Z. W.; Yu, H. J.; Zhang, P. C.; Wang, S. L. et al. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv. Funct. Mater. 2017, 27, 1604300.CrossRefGoogle Scholar
  17. [17]
    Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.CrossRefGoogle Scholar
  18. [18]
    George, J. N. Platelets. Lancet 2000, 355, 1531–1539.CrossRefGoogle Scholar
  19. [19]
    Ho-Tin-Noé, B.; Demers, M.; Wagner, D. D. How platelets safeguard vascular integrity. J. Thromb. Haemost. 2011, 9, 56–65.CrossRefGoogle Scholar
  20. [20]
    Boilard, E.; Blanco, P.; Nigrovic, P. A. Platelets: Active players in the pathogenesis of arthritis and SLE. Nat. Rev. Rheumatol. 2012, 8, 534–542.CrossRefGoogle Scholar
  21. [21]
    Boilard, E.; Nigrovic, P. A.; Larabee, K.; Watts, G. F. M.; Coblyn, J. S.; Weinblatt, M. E.; Massarotti, E. M.; Remold-O’Donnell, E.; Farndale, R. W.; Ware, J. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010, 327, 580–583.CrossRefGoogle Scholar
  22. [22]
    Haynes, B. F.; Hale, L. P.; Patton, K. L.; Martin, M. E.; McCallum, R. M. Measurement of an adhesion molecule as an indicator of inflammatory disease activity: Up-regulation of the receptor for hyaluronate (CD44) in rheumatoid arthritis. Arthritis Rheum. 1991, 34, 1434–1443.CrossRefGoogle Scholar
  23. [23]
    Nedvetzki, S.; Walmsley, M.; Alpert, E.; Williams, R. O.; Feldmann, M.; Naor, D. CD44 involvement in experimental collagen-induced arthritis (CIA). J. Autoimmun. 1999, 13, 39–47.CrossRefGoogle Scholar
  24. [24]
    Johnson, B. A.; Haines, G. K.; Harlow, L. A.; Koch, A. E. Adhesion molecule expression in human synovial tissue. Arthritis Rheum. 1993, 36, 137–146.CrossRefGoogle Scholar
  25. [25]
    Stone, J. P.; Wagner, D. D. P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J. Clin. Invest. 1993, 92, 804–813.CrossRefGoogle Scholar
  26. [26]
    Schett, G.; Gravallese, E. Bone erosion in rheumatoid arthritis: Mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol. 2012, 8, 656–664.CrossRefGoogle Scholar
  27. [27]
    Brand, D. D.; Latham, K. A.; Rosloniec, E. F. Collagen induced arthritis. Nat. Protoc. 2007, 2, 1269–1275.CrossRefGoogle Scholar
  28. [28]
    Quan, L. D.; Zhang, Y. J.; Crielaard, B. J.; Dusad, A.; Lele, S. M.; Rijcken, C. J. F.; Metselaar, J. M.; Kostková, H.; Etrych, T.; Ulbrich, K. et al. Nanomedicines for inflammatory arthritis: Head-to-head comparison of glucocorticoidcontaining polymers, micelles, and liposomes. ACS Nano 2014, 8, 458–466.CrossRefGoogle Scholar
  29. [29]
    Kim, M. J.; Park, J. S.; Lee, S. J.; Jang, J.; Park, J. S.; Back, S. H.; Bahn, G.; Park, J. H.; Kang, Y. M.; Kim, S. H. et al. Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy. J. Control. Release 2015, 216, 140–148.CrossRefGoogle Scholar
  30. [30]
    Allen, T. M.; Murray, L.; MacKeigan, S.; Shah, M. Chronic liposome administration in mice: Effects on reticuloendothelial function and tissue distribution. J. Pharmacol. Exp. Ther. 1984, 229, 267–275.Google Scholar
  31. [31]
    Grozovsky, R.; Hoffmeister, K. M.; Falet, H. Novel clearance mechanisms of platelets. Curr. Opin. Hematol. 2010, 17, 585–589.CrossRefGoogle Scholar
  32. [32]
    Dehaini, D.; Wei, X. L.; Fang, R. H.; Masson, S.; Angsantikul, P.; Luk, B. T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A. V. et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 2017, 29, 1606209.CrossRefGoogle Scholar
  33. [33]
    Poduval, P.; Sillat, T.; Beklen, A.; Kouri, V. P.; Virtanen, I.; Konttinen, Y. T. Type IV collagen α-chain composition in synovial lining from trauma patients and patients with rheumatoid arthritis. Arthritis Rheum. 2007, 56, 3959–3967.CrossRefGoogle Scholar
  34. [34]
    Rosloniec, E. F.; Cremer, M.; Kang, A. H.; Myers, L. K.; Brand, D. D. Collagen-induced arthritis. Curr. Protocols Immunol. 2010, 89, 15.5.1–15.5.25.Google Scholar
  35. [35]
    Schwartz, B. D.; Mengle-Gaw, L. J. Tacrolimus for the treatment of rheumatoid arthritis: Are broad-based immunosuppressants still valid? Future Rheumatol. 2006, 1, 661–672.CrossRefGoogle Scholar
  36. [36]
    Aryal, S.; Hu, C. M. J.; Fang, R. H.; Dehaini, D.; Carpenter, C.; Zhang, D. E.; Zhang, L. F. Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine 2013, 8, 1271–1280.CrossRefGoogle Scholar
  37. [37]
    Sintnicolaas, K.; van Marwijk Kooij, M.; van Prooijen, H. C.; van Dijk, B. A.; van Putten, W. L.; Claas, F. H.; Novotny, V. M.; Brand, A. Leukocyte depletion of random singledonor platelet transfusions does not prevent secondary human leukocyte antigen-alloimmunization and refractoriness: A randomized prospective study. Blood 1995, 85, 824–828.Google Scholar
  38. [38]
    Hu, Q. Y.; Qian, C. G.; Sun, W. J.; Wang, J. Q.; Chen, Z. W.; Bomba, H. N.; Xin, H. L.; Shen, Q. D.; Gu, Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. 2016, 28, 9573–9580.CrossRefGoogle Scholar
  39. [39]
    Hu, Q. Y.; Sun, W. J.; Qian, C. G.; Bomba, H. N.; Xin, H. L.; Gu, Z. Relay drug delivery for amplifying targeting signal and enhancing anticancer efficacy. Adv. Mater. 2017, 29, 1605803.CrossRefGoogle Scholar
  40. [40]
    Wang, C.; Sun, W. J.; Ye, Y. Q.; Hu, Q. Y.; Bomba, H. N.; Gu, Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 2017, 1, 0011.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuwei He
    • 1
  • Ruixiang Li
    • 1
  • Jianming Liang
    • 1
    • 2
  • Ying Zhu
    • 1
    • 2
  • Shuya Zhang
    • 1
  • Zicong Zheng
    • 1
  • Jing Qin
    • 1
  • Zhiqing Pang
    • 1
    Email author
  • Jianxin Wang
    • 1
    Email author
  1. 1.Department of Pharmaceutics, School of PharmacyFudan University & Key Laboratory of Smart Drug Delivery, Ministry of EducationShanghaiChina
  2. 2.Institute of Clinical PharmacologyGuangzhou University of Traditional Chinese MedicineGuangzhouChina

Personalised recommendations