Skip to main content

Raman investigation of air-stable silicene nanosheets on an inert graphite surface

Abstract

The fascinating properties of two dimensional (2D) crystals have gained increasing interest for many applications. The synthesis of a 2D silicon structure, namely silicene, is attracting great interest for possible development of next generation electronic devices. The main difficulty in working with silicene remains its strong tendency to oxidation when exposed to air as a consequence of its relatively highly buckled structure. In this work, we univocally identify the Raman mode of air-stable low-buckled silicene nanosheets synthesized on highly oriented pyrolytic graphite (HOPG) located at 542.5 cm−1. The main focus of this work is Raman spectroscopy and mapping analyses in combination with ab initio calculations. Scanning tunneling microscopy images reveal the presence of a patchwork of Si three-dimensional (3D) clusters and contiguous Si areas presenting a honeycomb atomic arrangement, rotated by 30° with respect to the HOPG substrate underneath, with a lattice parameter of 0.41 ± 0.02 nm and a buckling of the Si atoms of 0.05 nm. Raman analysis supports the co-existence of 3D silicon clusters and 2D silicene. The Raman shift of low-buckled silicene on an inert substrate has not been reported so far and it is completely different from the one calculated for free-standing silicene and the ones measured for silicene grown on Ag(111) surfaces. Our experimental results are perfectly reproduced by our ab initio calculations of deposited silicene nanosheets. This leads us to conclude that the precise value of the observed Raman shift crucially depends on the strain between the silicene and the HOPG substrate.

This is a preview of subscription content, access via your institution.

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  Google Scholar 

  3. Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-temperature quantum Hall effect in graphene. Science 2007, 315, 1379.

    Article  Google Scholar 

  4. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  Google Scholar 

  5. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  6. Scheier, P.; Marsen, B.; Lonfat, M.; Schneider, W. D.; Sattler, K. Growth of silicon nanostructures on graphite. Surf. Sci. 2000, 458, 113–122.

    Article  Google Scholar 

  7. Mélinon, P.; Kéghélian, P.; Prével, B.; Perez, A.; Guiraud, G.; LeBrusq, J.; Lermé, J.; Pellarin, M.; Broyer, M. Nanostructured silicon films obtained by neutral cluster depositions. J. Chem. Phys. 1997, 107, 10278.

    Article  Google Scholar 

  8. Katırcıoğlu, Ş.; Erkoç, Ş. Structural and electronic properties of bare and hydrogenated silicon clusters. Phys. E 2001, 9, 314–320.

    Article  Google Scholar 

  9. Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

    Article  Google Scholar 

  10. Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike twodimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

    Article  Google Scholar 

  11. Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.

    Article  Google Scholar 

  12. Scalise, E.; Houssa, M.; Pourtois, G.; van den Broek, B.; Afanas’ev, V.; Stesmans, A. Vibrational properties of silicene and germanene. Nano Res. 2013, 6, 19–28.

    Article  Google Scholar 

  13. Yan, J. A.; Stein, R.; Schaefer, D. M.; Wang, X. Q.; Chou, M. Y. Electron-phonon coupling in two-dimensional silicene and germanene. Phys. Rev. B 2013, 88, 121403(R).

    Article  Google Scholar 

  14. Zhuang, J. C.; Xu, X.; Du, Y.; Wu, K. H.; Chen, L.; Hao, W. C.; Wang, J. O.; Yeoh, W. K.; Wang, X. L.; Dou, S. X. Investigation of electron-phonon coupling in epitaxial silicene by in situ Raman spectroscopy. Phys. Rev. B 2015, 91, 161409(R).

    Article  Google Scholar 

  15. Solonenko, D.; Gordan, O. D.; Le Lay, G.; Sahin, H.; Cahangirov, S.; Zahn, D. R. T.; Vogt, P. 2D vibrational properties of epitaxial silicene on Ag(111). 2D Mater. 2016, 4, 015008.

    Article  Google Scholar 

  16. Scalise, E.; Cinquanta, E.; Houssa, M.; van den Broek, B.; Chiappe, D.; Grazianetti, C.; Pourtois, G.; Ealet, B.; Molle, A.; Fanciulli, M. et al. Vibrational properties of epitaxial silicene layers on (111) Ag. Appl. Surf. Sci. 2014, 291, 113–117.

    Article  Google Scholar 

  17. De Crescenzi, M.; Berbezier, I.; Scarselli, M.; Castrucci, P.; Abbarchi, M.; Ronda, A.; Jardali, F.; Park, J.; Vach, H. Formation of silicene nanosheets on graphite. ACS Nano 2016, 10, 11163–11171.

    Article  Google Scholar 

  18. Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Twodimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096–2101.

    Article  Google Scholar 

  19. Dovesi, R.; Orlando, R.; Civalleri, B.; Roetti, C.; Saunders, V. R.; Zicovich-Wilson, C. M. CRYSTAL: A computational tool for the ab initio study of the electronic properties of crystals. Z. Kristallogr. 2005, 220, 571–573.

    Google Scholar 

  20. Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C. M.; Pascale, F.;, Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, J. J. et al. CRYSTAL09 User’s Manual. University of Torino: Torino, 2009.

    Google Scholar 

  21. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  22. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  Google Scholar 

  23. Pascale, F.; Zicovich-Wilson, C. M.; López Gejo, F.; Civalleri, B.; Orlando, R.; Dovesi, R. The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J. Comput. Chem. 2004, 25, 888–897.

    Article  Google Scholar 

  24. Zicovich-Wilson, C. M.; Pascale, F.; Roetti, C.; Saunders, V. R.; Orlando, R.; Dovesi, R. Calculation of the vibration frequencies of α-quartz: The effect of Hamiltonian and basis set. J. Comput. Chem. 2004, 25, 1873–1881.

    Article  Google Scholar 

  25. Ferro, Y.; Thomas, C.; Angot, T.; Génésio, T.; Allouche, A. Theoretical and experimental characterization of damaged graphite surfaces. J. Nucl. Mater. 2007, 363–365, 1206–1210.

    Article  Google Scholar 

  26. Büttner, M.; Choudhury, P.; Johnson, J. K.; Yates, J. T., Jr. Vacancy clusters as entry ports for cesium intercalation in graphite. Carbon 2011, 49, 3937–3952.

    Google Scholar 

  27. Peng, W. B.; Xu, T.; Diener, P.; Biadala, L.; Berthe, M.; Pi, X. D.; Borensztein, Y.; Curcella, A.; Bernard, R.; Prévot, G. et al. Resolving the controversial existence of silicene and germanene nanosheets grown on graphite. ACS Nano 2018, 12, 4754–4760.

    Article  Google Scholar 

  28. Cai, Y. M.; Chuu, C. P.; Wei, C. M.; Chou, M. Y. Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys. Rev. B 2013, 88, 245408.

    Article  Google Scholar 

  29. Chen, X. B.; Tian, F. Y.; Persson, C.; Duan, W. H.; Chen, N. X. Interlayer interactions in graphites. Sci. Rep. 2013, 3, 3046.

    Article  Google Scholar 

  30. Persichetti, L.; Jardali, F.; Vach, H.; Sgarlata, A.; Berbezier, I.; De Crescenzi, M.; Balzarotti, A. van der Waals heteroepitaxy of germanene islands on graphite. J. Phys. Chem. Lett. 2016, 7, 3246–3251.

    Article  Google Scholar 

  31. Zhang, L.; Bampoulis, P.; Rudenko, A. N.; Yao, Q.; van Houselt, A.; Poelsema, B.; Katsnelson, M. I.; Zandvliet, H. J. W. Structural and electronic properties of germanene on MoS2. Phys. Rev. Lett. 2016, 116, 256804.

    Article  Google Scholar 

  32. van Bremen, R.; Yao, Q. R.; Banerjee, S.; Cakir, D.; Oncel, N.; Zandvliet, H. J. W. Intercalation of Si between MoS2 layers. Beilstein J. Nanotechnol. 2017, 8, 1952–1960.

    Article  Google Scholar 

  33. Nakashima, S.; Harima, H. Raman investigation of SiC polytypes. Phys. Stat. Sol. (a) 1997, 162, 39–64.

    Article  Google Scholar 

  34. Borowicz, P.; Latek, M.; Rzodkiewicz, W.; Łaszcz, A.; Czerwinski, A.; Ratajczak, J. Deep-ultraviolet Raman investigation of silicon oxide: Thin film on silicon substrate versus bulk material. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2012, 3, 045003.

    Google Scholar 

  35. Parker, J. H.; Feldman, D. W.; Ashkin, M. Raman scattering by silicon and germanium. Phys. Rev. 1967, 155, 712–714.

    Article  Google Scholar 

  36. Faraci, G.; Gibilisco, S.; Pennisi, A. R. Quantum confinement and thermal effects on the Raman spectra of Si nanocrystals. Phys. Rev. B 2009, 80, 193410.

    Article  Google Scholar 

  37. Temple, P. A.; Hathaway, C. E. Multiphonon Raman spectrum of silicon. Phys. Rev. B 1973, 7, 3685–3697.

    Article  Google Scholar 

  38. De Padova, P.; Ottaviani, C.; Quaresima, C.; Olivieri, B.; Imperatori, P.; Salomon, E.; Angot, T.; Quaglian, L.; Romano, C.; Vona, A. et al. 24 h stability of thick multilayer silicene in air. 2D Mater. 2014, 1, 021003.

    Article  Google Scholar 

  39. Himpsel, F. J.; McFeely, F. R.; Taleb-Ibrahimi, A.; Yarmoff, J. A.; Hollinger, G. Microscopic structure of the SiO2/Si interface. Phys. Rev. B 1988, 38, 6084–6096.

    Article  Google Scholar 

  40. Du, Y.; Zhuang, J. C.; Wang, J. O.; Li, Z.; Liu, H. S.; Zhao, J. J.; Xu, X.; Feng, H. F.; Chen, L.; Wu, K. H. et al. Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation. Sci. Adv. 2016, 2, e1600067.

    Article  Google Scholar 

  41. Jarrold, M. F.; Ray, U.; Creegan, K. M. Chemistry of semiconductor clusters: Large silicon clusters are much less reactive towards oxygen than the bulk. J. Chem. Phys. 1990, 93, 224–229.

    Article  Google Scholar 

Download references

Acknowledgements

H. V., F. J., and C. L. gratefully acknowledge the HPC centers of the EDF, IDRIS (Grant i2016-090642), and CERMM for computational resources and the Hariri Foundation for Sustainable Human Development for the scholarship awarded to F. J.. M. D. C., P. C., M. S. and M. S. would like to acknowledge the European Community for the RISE Project CoExAN GA644076 and the project “Silicene and Germanene: novel two-dimensional nanomaterial” funded by the University of Roma Tor Vergata (Italy).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paola Castrucci, Filippo Fabbri or Holger Vach.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castrucci, P., Fabbri, F., Delise, T. et al. Raman investigation of air-stable silicene nanosheets on an inert graphite surface. Nano Res. 11, 5879–5889 (2018). https://doi.org/10.1007/s12274-018-2097-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2097-6

Keywords

  • 2D materials
  • silicene
  • Raman spectroscopy
  • ab initio calculations
  • scanning tunneling microscopy
  • scanning tunneling spectroscopy