Recent advances in mRNA vaccine delivery

Abstract

In recent years, messenger RNA (mRNA) vaccines have been intensively studied in the fields of cancer immunotherapy and infectious diseases because of their excellent efficacy and safety profile. Despite significant progress in the rational design of mRNA vaccines and elucidation of their mechanism of action, their widespread application is limited by the development of safe and effective delivery systems that protect them from ubiquitous ribonucleases (RNases), facilitate their entry into cells and subsequent escape from endosomes, and target them to lymphoid organs or particular cells. Some mRNA vaccines based on lipid carriers have entered clinical trials. Vaccines based on polymers, while not as clinically advanced as lipid vectors, show considerable potentials. In this review, we discuss the necessity of formulating mRNA vaccines with delivery systems, and we provide an overview of reported delivery systems.

References

  1. [1]

    Iavarone, C.; O'Hagan D, T.; Yu, D.; Delahaye, N. F.; Ulmer, J. B. Mechanism of action of mRNA–based vaccines. Expert Rev. Vaccines 2017, 16, 871–881.

    Google Scholar 

  2. [2]

    Martinon, F.; Krishnan, S.; Lenzen, G.; Magné, R.; Gomard, E.; Guillet, J. G.; Lévy, J. P.; Meulien, P. Induction of virus–specific cytotoxic T lymphocytes in vivo by liposomeentrapped mRNA. Eur. J. Immunol. 1993, 23, 1719–7122.

    Google Scholar 

  3. [3]

    Geall, A. J.; Ulmer, J. B. Introduction to RNA–based vaccines and therapeutics. Expert Rev. Vaccines 2015, 14, 151–152.

    Google Scholar 

  4. [4]

    Rodríguez–Gascón, A.; del Pozo–Rodríguez, A.; Solinís, M. Á. Development of nucleic acid vaccines: Use of self–amplifying RNA in lipid nanoparticles. Int. J. Nanomedicine 2014, 9, 1833–1843.

    Google Scholar 

  5. [5]

    Pollard, C.; De Koker, S.; Saelens, X.; Vanham, G.; Grooten, J. Challenges and advances towards the rational design of mRNA vaccines. Trends Mol. Med. 2013, 19, 705–713.

    Google Scholar 

  6. [6]

    Hekele, A.; Bertholet, S.; Archer, J.; Gibson, D. G.; Palladino, G.; Brito, L. A.; Otten, G. R.; Brazzoli, M.; Buccato, S.; Bonci, A. et al. Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2013, 2, e52.

    Google Scholar 

  7. [7]

    Schlake, T.; Thess, A.; Fotin–Mleczek, M.; Kallen, K. J. Developing mRNA–vaccine technologies. RNA Biol. 2012, 9, 1319–1330.

    Google Scholar 

  8. [8]

    Bettinger, T.; Carlisle, R. C.; Read, M. L.; Ogris, M.; Seymour, L. W. Peptide–mediated RNA delivery: A novel approach for enhanced transfection of primary and postmitotic cells. Nucleic Acids Res. 2001, 29, 3882–3891.

    Google Scholar 

  9. [9]

    Sharova, L. V.; Sharov, A. A.; Nedorezov, T.; Piao, Y.; Shaik, N.; Ko, M. S. H. Database for mRNA half–life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 2009, 16, 45–58.

    Google Scholar 

  10. [10]

    Pollard, C.; Rejman, J.; De Haes, W.; Verrier, B.; Van Gulck, E.; Naessens, T.; De Smedt, S.; Bogaert, P.; Grooten, J.; Vanham, G. et al. Type I IFN counteracts the induction of antigen–specific immune responses by lipid–based delivery of mRNA vaccines. Mol. Ther. 2013, 21, 251–259.

    Google Scholar 

  11. [11]

    Weide, B.; Garbe, C.; Rammensee, H. G.; Pascolo, S. Plasmid DNA–and messenger RNA–based anti–cancer vaccination. Immunol. Lett. 2008, 115, 33–42.

    Google Scholar 

  12. [12]

    Sahin, U.; Karikó, K.; Türeci, Ö. mRNA–based therapeutics— Developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780.

    Google Scholar 

  13. [13]

    Granstein, R. D.; Ding, W. H.; Ozawa, H. Induction of anti–tumor immunity with epidermal cells pulsed with tumorderived RNA or intradermal administration of RNA. J. Invest. Dermatol. 2000, 114, 632–636.

    Google Scholar 

  14. [14]

    Kreiter, S.; Selmi, A.; Diken, M.; Koslowski, M.; Britten, C. M.; Huber, C.; Türeci, Ö.; Sahin, U. Intranodal vaccination with naked antigen–encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 2010, 70, 9031–9040.

    Google Scholar 

  15. [15]

    Probst, J.; Weide, B.; Scheel, B.; Pichler, B. J.; Hoerr, I.; Rammensee, H. G.; Pascolo, S. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid–specific, saturable and ion dependent. Gene Ther. 2007, 14, 1175–1180.

    Google Scholar 

  16. [16]

    Lorenz, C.; Fotin–Mleczek, M.; Roth, G.; Becker, C.; Dam, T. C.; Verdurmen, W. P. R.; Brock, R.; Probst, J.; Schlake, T. Protein expression from exogenous mRNA: Uptake by receptor–mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol. 2011, 8, 627–636.

    Google Scholar 

  17. [17]

    Peiser, L.; Mukhopadhyay, S.; Gordon, S. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 2002, 14, 123–128.

    Google Scholar 

  18. [18]

    Diken, M.; Kreiter, S.; Selmi, A.; Britten, C. M.; Huber, C.; Türeci, Ö.; Sahin, U. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther. 2011, 18, 702–708.

    Google Scholar 

  19. [19]

    Selmi, A.; Vascotto, F.; Kautz–Neu, K.; Türeci, Ö.; Sahin, U.; von Stebut, E.; Diken, M.; Kreiter, S. Uptake of synthetic naked RNA by skin–resident dendritic cells via macropinocytosis allows antigen expression and induction of T–cell responses in mice. Cancer Immunol. Immunother. 2016, 65, 1075–1083.

    Google Scholar 

  20. [20]

    Wolff, J. A.; Malone, R. W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P. L. Direct gene–transfer into mouse muscle in vivo. Science 1990, 247, 1465–1468.

    Google Scholar 

  21. [21]

    Midoux, P.; Pichon, C. Lipid–based mRNA vaccine delivery systems. Expert Rev. Vaccines 2015, 14, 221–234.

    Google Scholar 

  22. [22]

    Lazzaro, S.; Giovani, C.; Mangiavacchi, S.; Magini, D.; Maione, D.; Baudner, B.; Geall, A. J.; De Gregorio, E.; D'Oro, U.; Buonsanti, C. Cd8 T–cell priming upon mRNA vaccination is restricted to bone–marrow–derived antigenpresenting cells and may involve antigen transfer from myocytes. Immunology 2015, 146, 312–326.

    Google Scholar 

  23. [23]

    Kowalczyk, A.; Doener, F.; Zanzinger, K.; Noth, J.; Baumhof, P.; Fotin–Mleczek, M.; Heidenreich, R. Self–adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine 2016, 34, 3882–3893.

    Google Scholar 

  24. [24]

    Alexopoulou, L.; Holt, A. C.; Medzhitov, R.; Flavell, R. A. Recognition of double–stranded RNA and activation of NF–κB by toll–like receptor 3. Nature 2001, 413, 732–738.

    Google Scholar 

  25. [25]

    Botos, I.; Liu, L.; Wang, Y.; Segal, D. M.; Davies, D. R. The toll–like receptor 3:dsRNA signaling complex. Biochim. Biophys. Acta 2009, 1789, 667–674.

    Google Scholar 

  26. [26]

    Ceppi, M.; Ruggli, N.; Tache, V.; Gerber, H.; McCullough, K. C.; Summerfield, A. Double–stranded secondary structures on mRNA induce type I interferon (IFN α/β) production and maturation of mRNA–transfected monocyte–derived dendritic cells. J. Gene Med. 2005, 7, 452–465.

    Google Scholar 

  27. [27]

    Diebold, S. S.; Kaisho, T.; Hemmi, H.; Akira, S.; Reis e Sousa, C. Innate antiviral responses by means of TLR7–mediated recognition of single–stranded RNA. Science 2004, 303, 1529–1531.

    Google Scholar 

  28. [28]

    Diebold, S. S.; Massacrier, C.; Akira, S.; Paturel, C.; Morel, Y.; Reis e Sousa, C. Nucleic acid agonists for toll–like receptor 7 are defined by the presence of uridine ribonucleotides. Eur. J. Immunol. 2006, 36, 3256–3267.

    Google Scholar 

  29. [29]

    Forsbach, A.; Nemorin, J. G.; Montino, C.; Müller, C.; Samulowitz, U.; Vicari, A. P.; Jurk, M.; Mutwiri, G. K.; Krieg, A. M.; Lipford, G. B. et al. Identification of RNA sequence motifs stimulating sequence–specific TLR8–dependent immune responses. J. Immunol. 2008, 180, 3729–3738.

    Google Scholar 

  30. [30]

    Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species–specific recognition of single–stranded RNA via toll–like receptor 7 and 8. Science 2004, 303, 1526–1529.

    Google Scholar 

  31. [31]

    Sabbah, A.; Chang, T. H.; Harnack, R.; Frohlich, V.; Tominaga, K.; Dube, P. H.; Xiang, Y.; Bose, S. Activation of innate immune antiviral responses by Nod2. Nat. Immunol. 2009, 10, 1073–1080.

    Google Scholar 

  32. [32]

    Schlee, M.; Roth, A.; Hornung, V.; Hagmann, C. A.; Wimmenauer, V.; Barchet, W.; Coch, C.; Janke, M.; Mihailovic, A.; Wardle, G. et al. Recognition of 5' triphosphate by RIG–I helicase requires short blunt double–stranded RNA as contained in panhandle of negative–strand virus. Immunity 2009, 31, 25–34.

    Google Scholar 

  33. [33]

    Yoneyama, M.; Kikuchi, M.; Matsumoto, K.; Imaizumi, T.; Miyagishi, M.; Taira, K.; Foy, E.; Loo, Y. M.; Gale, M., Jr.; Akira, S. et al. Shared and unique functions of the DExD/H–box helicases RIG–I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 2005, 175, 2851–2858.

    Google Scholar 

  34. [34]

    Probst, J.; Brechtel, S.; Scheel, B.; Hoerr, I.; Jung, G.; Rammensee, H. G.; Pascolo, S. Characterization of the ribonuclease activity on the skin surface. Genet. Vaccines Ther. 2006, 4, 4.

    Google Scholar 

  35. [35]

    Boudreau, J. E.; Bonehill, A.; Thielemans, K.; Wan, Y. H. Engineering dendritic cells to enhance cancer immunotherapy. Mol. Ther. 2011, 19, 841–853.

    Google Scholar 

  36. [36]

    Jiang, H.; Wang, Q.; Sun, X. Lymph node targeting strategies to improve vaccination efficacy. J. Control. Release 2017, 267, 47–56.

    Google Scholar 

  37. [37]

    Li, M.; Zhao, M. N.; Fu, Y.; Li, Y.; Gong, T.; Zhang, Z. R.; Sun, X. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra–and paracellular pathways. J. Control. Release 2016, 228, 9–19.

    Google Scholar 

  38. [38]

    Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401.

    Google Scholar 

  39. [39]

    Pascolo, S. Vaccination with messenger RNA (mRNA). In Toll–Like Receptors (TLRs) and Innate Immunity. Handbook of Experimental Pharmacology; Bauer, S.; Hartmann, G., Eds.; Springer: Berlin, Heidelberg, 2008; Vol. 183, pp 221–235.

    Google Scholar 

  40. [40]

    Sonenberg, N.; Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell 2009, 136, 731–745.

    Google Scholar 

  41. [41]

    Pasquinelli, A. E.; Dahlberg, J. E.; Lund, E. Reverse 5’ caps in RNAs made in vitro by phage RNA polymerases. RNA 1995, 1, 957–967.

    Google Scholar 

  42. [42]

    Stepinski, J.; Waddell, C.; Stolarski, R.; Darzynkiewicz, E.; Rhoads, R. Synthesis and properties of mRNA containing the novel “anti–reverse” cap analogs 7–methyl (3’–O–methyl)gpppg and 7–methyl (3’–deoxy)GpppG. RNA 2001, 7, 1486–1495.

    Google Scholar 

  43. [43]

    Kowalska, J.; Lewdorowicz, M.; Zuberek, J.; Grudzien–Nogalska, E.; Bojarska, E.; Stepinski, J.; Rhoads, R. E.; Darzynkiewicz, E.; Davis, R. E.; Jemielity, J. Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. RNA 2008, 14, 1119–1131.

    Google Scholar 

  44. [44]

    Martin, S. A.; Paoletti, E.; Moss, B. Purification of mRNA guanylyltransferase and mRNA (guanine–7–) methyltransferase from vaccinia virions. J. Biol. Chem. 1975, 250, 9322–9329.

    Google Scholar 

  45. [45]

    Holtkamp, S.; Kreiter, S.; Selmi, A.; Simon, P.; Koslowski, M.; Huber, C.; Türeci, Ö.; Sahin, U. Modification of antigenencoding RNA increases stability, translational efficacy, and T–cell stimulatory capacity of dendritic cells. Blood 2006, 108, 4009–4017.

    Google Scholar 

  46. [46]

    Körner, C. G.; Wahle, E. Poly(A) tail shortening by a mammalian poly(A)–specific 3'–exoribonuclease. J. Biol. Chem. 1997, 272, 10448–1056.

    Google Scholar 

  47. [47]

    Krieg, P. A.; Melton, D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cdnas. Nucleic Acids Res. 1984, 12, 7057–7070.

    Google Scholar 

  48. [48]

    Bossi, L.; Roth, J. R. The influence of codon context on genetic code translation. Nature 1980, 286, 123–127.

    Google Scholar 

  49. [49]

    Zhong, F.; Cao, W. P.; Chan, E.; Tay, P. N.; Cahya, F. F.; Zhang, H. F.; Lu, J. H. Deviation from major codons in the toll–like receptor genes is associated with low toll–like receptor expression. Immunology 2005, 114, 83–93.

    Google Scholar 

  50. [50]

    Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004, 22, 346–353.

    Google Scholar 

  51. [51]

    Karikó, K.; Muramatsu, H.; Welsh, F. A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 2008, 16, 1833–1840.

    Google Scholar 

  52. [52]

    Karikó, K.; Buckstein, M.; Ni, H. P.; Weissman, D. Suppression of RNA recognition by toll–like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005, 23, 165–175.

    Google Scholar 

  53. [53]

    Pardi, N.; Weissman, D. Nucleoside modified mRNA vaccines for infectious diseases. In RNA Vaccines. Methods in Molecular Biology; Kramps, T.; Elbers, K., Eds.; Humana Press: New York, NY, 2017; Vol. 1499, pp 109–121.

    Google Scholar 

  54. [54]

    DeFrancesco, L. The “anti–hype” vaccine. Nat. Biotechnol. 2017, 35, 193–197.

    Google Scholar 

  55. [55]

    Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non–viral vectors for genebased therapy. Nat. Rev. Genet. 2014, 15, 541–555.

    Google Scholar 

  56. [56]

    Vogel, A. B.; Lambert, L.; Kinnear, E.; Busse, D.; Erbar, S.; Reuter, K. C.; Wicke, L.; Perkovic, M.; Beissert, T.; Haas, H. et al. Self–amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 2018, 26, 446–455.

    Google Scholar 

  57. [57]

    Bonehill, A.; Heirman, C.; Tuyaerts, S.; Michiels, A.; Breckpot, K.; Brasseur, F.; Zhang, Y.; Van Der Bruggen, P.; Thielemans, K. Messenger RNA–electroporated dendritic cells presenting MAGE–A3 simultaneously in HLA class I and class II molecules. J. Immunol. 2004, 172, 6649–6657.

    Google Scholar 

  58. [58]

    Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160.

    Google Scholar 

  59. [59]

    Perri, V.; Pellegrino, M.; Ceccacci, F.; Scipioni, A.; Petrini, S.; Gianchecchi, E.; Lo Russo, A.; De Santis, S.; Mancini, G.; Fierabracci, A. Use of short interfering RNA delivered by cationic liposomes to enable efficient down–regulation of PTPN22 gene in human T lymphocytes. PLoS One 2017, 12, e0175784.

    Google Scholar 

  60. [60]

    Zhi, D. F.; Zhang, S. B.; Cui, S. H.; Zhao, Y.; Wang, Y. H.; Zhao, D. F. The headgroup evolution of cationic lipids for gene delivery. Bioconjugate Chem. 2013, 24, 487–519.

    Google Scholar 

  61. [61]

    Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev. 2009, 109, 259–302.

    Google Scholar 

  62. [62]

    Grabbe, S.; Haas, H.; Diken, M.; Kranz, L. M.; Langguth, P.; Sahin, U. Translating nanoparticulate–personalized cancer vaccines into clinical applications: Case study with RNAlipoplexes for the treatment of melanoma. Nanomedicine 2016, 11, 2723–2734.

    Google Scholar 

  63. [63]

    Hess, P. R.; Boczkowski, D.; Nair, S. K.; Snyder, D.; Gilboa, E. Vaccination with mRNAs encoding tumor–associated antigens and granulocyte–macrophage colony–stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol. Immun. 2006, 55, 672–683.

    Google Scholar 

  64. [64]

    Lv, H. T.; Zhang, S. B.; Wang, B.; Cui, S. H.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 2006, 114, 100–109.

    Google Scholar 

  65. [65]

    Hajj, K. A.; Whitehead, K. A. Tools for translation: Non–viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 17056.

    Google Scholar 

  66. [66]

    Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138.

    Google Scholar 

  67. [67]

    Reichmuth, A. M.; Oberli, M. A.; Jeklenec, A.; Langer, R.; Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 2016, 7, 319–334.

    Google Scholar 

  68. [68]

    Walsh, C. L.; Nguyen, J.; Tiffany, M. R.; Szoka, F. C. Synthesis, characterization, and evaluation of ionizable lysine–based lipids for siRNA delivery. Bioconjugate Chem. 2013, 24, 36–43.

    Google Scholar 

  69. [69]

    Granot, Y.; Peer, D. Delivering the right message: Challenges and opportunities in lipid nanoparticles–mediated modified mRNA therapeutics—An innate immune system standpoint. Semin. Immunol. 2017, 34, 68–77.

    Google Scholar 

  70. [70]

    Chen, S.; Tam, Y. Y. C.; Lin, P. J. C.; Sung, M. M. H.; Tam, Y. K.; Cullis, P. R. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J. Control Release 2016, 235, 236–244.

    Google Scholar 

  71. [71]

    Jayaraman, M.; Ansell, S. M.; Mui, B. L.; Tam, Y. K.; Chen, J. X.; Du, X. Y.; Butler, D.; Eltepu, L.; Matsuda, S.; Narayanannair, J. K. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem., Int. Ed. 2012, 51, 8529–8533.

    Google Scholar 

  72. [72]

    Maier, M. A.; Jayaraman, M.; Matsuda, S.; Liu, J.; Barros, S.; Querbes, W.; Tam, Y. K.; Ansell, S. M.; Kumar, V.; Qin, J. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 2013, 21, 1570–1578.

    Google Scholar 

  73. [73]

    Pardi, N.; Hogan, M. J.; Pelc, R. S.; Muramatsu, H.; Andersen, H.; DeMaso, C. R.; Dowd, K. A.; Sutherland, L. L.; Scearce, R. M.; Parks, R. et al. Zika virus protection by a single low–dose nucleoside–modified mRNA vaccination. Nature 2017, 543, 248–251.

    Google Scholar 

  74. [74]

    Richner, J. M.; Himansu, S.; Dowd, K. A.; Butler, S. L.; Salazar, V.; Fox, J. M.; Julander, J. G.; Tang, W. W.; Shresta, S.; Pierson, T. C. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 2017, 168, 1114–1125.e10.

    Google Scholar 

  75. [75]

    Oberli, M. A.; Reichmuth, A. M.; Dorkin, J. R.; Mitchell, M. J.; Fenton, O. S.; Jaklenec, A.; Anderson, D. G.; Langer, R.; Blankschtein, D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017, 17, 1326–1335.

    Google Scholar 

  76. [76]

    Gary, D. J.; Lee, H.; Sharma, R.; Lee, J. S.; Kim, Y.; Cui, Z. Y.; Jia, D.; Bowman, V. D.; Chipman, P. R.; Wan, L. et al. Influence of nano–carrier architecture on in vitro siRNA delivery performance and in vivo biodistribution: Polyplexes vs micelleplexes. ACS Nano 2011, 5, 3493–3505.

    Google Scholar 

  77. [77]

    Wang, W.; Li, W.; Ma, N.; Steinhoff, G. Non–viral gene delivery methods. Curr. Pharm. Biotechnol. 2013, 14, 46–60.

    Google Scholar 

  78. [78]

    Elouahabi, A.; Ruysschaert, J. M. Formation and intracellular trafficking of lipoplexes and polyplexes. Mol. Ther. 2005, 11, 336–347.

    Google Scholar 

  79. [79]

    Lungwitz, U.; Breunig, M.; Blunk, T.; Göpferich, A. Polyethylenimine–based non–viral gene delivery systems. Eur. J. Pharm. Biopharm. 2005, 60, 247–266.

    Google Scholar 

  80. [80]

    Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301.

    Google Scholar 

  81. [81]

    Démoulins, T.; Milona, P.; Englezou, P. C.; Ebensen, T.; Schulze, K.; Suter, R.; Pichon, C.; Midoux, P.; Guzmán, C. A.; Ruggli, N. et al. Polyethylenimine–based polyplex delivery of self–replicating RNA vaccines. Nanomedicine 2016, 12, 711–722.

    Google Scholar 

  82. [82]

    Li, M.; Li, Y.; Peng, K.; Wang, Y.; Gong, T.; Zhang, Z. R.; He, Q.; Sun, X. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses. Acta Biomater. 2017, 64, 237–248.

    Google Scholar 

  83. [83]

    Üzgün, S.; Nica, G.; Pfeifer, C.; Bosinco, M.; Michaelis, K.; Lutz, J. F.; Schneider, M.; Rosenecker, J.; Rudolph, C. Pegylation improves nanoparticle formation and transfection efficiency of messenger RNA. Pharm. Res. 2011, 28, 2223–2232.

    Google Scholar 

  84. [84]

    McKinlay, C. J.; Vargas, J. R.; Blake, T. R.; Hardy, J. W.; Kanada, M.; Contag, C. H.; Wender, P. A.; Waymouth, R. M. Charge–altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl. Acad. Sci. USA 2017, 114, E448–E456.

    Google Scholar 

  85. [85]

    Jarzębińska, A.; Pasewald, T.; Lambrecht, J.; Mykhaylyk, O.; Kümmerling, L.; Beck, P.; Hasenpusch, G.; Rudolph, C.; Plank, C.; Dohmen, C. et al. A single methylene group in oligoalkylamine–based cationic polymers and lipids promotes enhanced mRNA delivery. Angew. Chem., Int. Ed. 2016, 55, 9591–9595.

    Google Scholar 

  86. [86]

    Almeida, M.; Magãlhes, M.; Veiga, F.; Figueiras, A. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. J. Polym. Res. 2018, 25, 31.

    Google Scholar 

  87. [87]

    Jhaveri, A. M.; Torchilin, V. P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol. 2014, 5, 77.

    Google Scholar 

  88. [88]

    Zhao, M. N.; Li, M.; Zhang, Z. R.; Gong, T.; Sun, X. Induction of HIV–1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Deliv. 2016, 23, 2596–2607.

    Google Scholar 

  89. [89]

    Matsui, A.; Uchida, S.; Ishii, T.; Itaka, K.; Kataoka, K. Messenger RNA–based therapeutics for the treatment of apoptosis–associated diseases. Sci. Rep. 2015, 5, 15810.

    Google Scholar 

  90. [90]

    Aini, H.; Itaka, K.; Fujisawa, A.; Uchida, H.; Uchida, S.; Fukushima, S.; Kataoka, K.; Saito, T.; Chung, U. I.; Ohba, S. Messenger RNA delivery of a cartilage–anabolic transcription factor as a disease–modifying strategy for osteoarthritis treatment. Sci. Rep. 2016, 6, 18743.

    Google Scholar 

  91. [91]

    Uchida, S.; Kinoh, H.; Ishii, T.; Matsui, A.; Tockary, T. A.; Takeda, K. M.; Uchida, H.; Osada, K.; Itaka, K.; Kataoka, K. Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials 2016, 82, 221–228.

    Google Scholar 

  92. [92]

    Baba, M.; Itaka, K.; Kondo, K.; Yamasoba, T.; Kataoka, K. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. J. Control. Release 2015, 201, 41–48.

    Google Scholar 

  93. [93]

    Guan, S.; Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector–based delivery systems. Gene Ther. 2017, 24, 133–143.

    Google Scholar 

  94. [94]

    Mockey, M.; Bourseau, E.; Chandrashekhar, V.; Chaudhuri, A.; Lafosse, S.; Le Cam, E.; Quesniaux, V. F. J.; Ryffel, B.; Pichon, C.; Midoux, P. mRNA–based cancer vaccine: Prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther. 2007, 14, 802–814.

    Google Scholar 

  95. [95]

    Perche, F.; Benvegnu, T.; Berchel, M.; Lebegue, L.; Pichon, C.; Jaffres, P. A.; Midoux, P. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 2011, 7, 445–453.

    Google Scholar 

  96. [96]

    Persano, S.; Guevara, M. L.; Li, Z. Q.; Mai, J. H.; Ferrari, M.; Pompa, P. P.; Shen, H. F. Lipopolyplex potentiates anti–tumor immunity of mRNA–based vaccination. Biomaterials 2017, 125, 81–89.

    Google Scholar 

  97. [97]

    Rezaee, M.; Oskuee, R. K.; Nassirli, H.; Malaekeh–Nikouei, B. Progress in the development of lipopolyplexes as efficient non–viral gene delivery systems. J. Control. Release 2016, 236, 1–14.

    Google Scholar 

  98. [98]

    Singh, R. S.; Gonçalves, C.; Sandrin, P.; Pichon, C.; Midoux, P.; Chaudhuri, A. On the gene delivery efficacies of pH–sensitive cationic lipids via endosomal protonation: A chemical biology investigation. Chem. Biol. 2004, 11, 713–723.

    Google Scholar 

  99. [99]

    Kumar, V. V.; Pichon, C.; Refregiers, M.; Guerin, B.; Midoux, P.; Chaudhuri, A. Single histidine residue in head–group region is sufficient to impart remarkable gene transfection properties to cationic lipids: Evidence for histidine–mediated membrane fusion at acidic pH. Gene Ther. 2003, 10, 1206–1215.

    Google Scholar 

  100. [100]

    Pichon, C.; Gonçalves, C.; Midoux, P. Histidine–rich peptides and polymers for nucleic acids delivery. Adv. Drug Deliv. Rev. 2001, 53, 75–94.

    Google Scholar 

  101. [101]

    Anderson, D. G.; Lynn, D. M.; Langer, R. Semi–automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem., Int. Ed. 2003, 42, 3153–3158.

    Google Scholar 

  102. [102]

    Zugates, G. T.; Peng, W. D.; Zumbuehl, A.; Jhunjhunwala, S.; Huang, Y. H.; Langer, R.; Sawicki, J. A.; Anderson, D. G. Rapid optimization of gene delivery by parallel endmodification of poly(β–amino ester)s. Mol. Ther. 2007, 15, 1306–1312.

    Google Scholar 

  103. [103]

    Brito, L. A.; Chan, M.; Shaw, C. A.; Hekele, A.; Carsillo, T.; Schaefer, M.; Archer, J.; Seubert, A.; Otten, G. R.; Beard, C. W. et al. A cationic nanoemulsion for the delivery of next–generation RNA vaccines. Mol. Ther. 2014, 22, 2118–2129.

    Google Scholar 

  104. [104]

    Ott, G.; Barchfeld, G. L.; Chernoff, D.; Radhakrishnan, R.; van Hoogevest, P.; Van Nest, G. MF59 design and evaluation of a safe and potent adjuvant for human vaccines. In Vaccine Design. Pharmaceutical Biotechnology; Powell, M. F.; Newman, M. J., Eds.; Springer: Boston, MA, 1995; Vol. 6, pp 277–296.

    Google Scholar 

  105. [105]

    Choi, W. J.; Kim, J. K.; Choi, S. H.; Park, J. S.; Ahn, W. S.; Kim, C. K. Low toxicity of cationic lipid–based emulsion for gene transfer. Biomaterials 2004, 25, 5893–5903.

    Google Scholar 

  106. [106]

    Forghanifard, M. M.; Gholamin, M.; Moaven, O.; Farshchian, M.; Ghahraman, M.; Aledavood, A.; Abbaszadegan, M. R. Neoantigen in esophageal squamous cell carcinoma for dendritic cell–based cancer vaccine development. Med. Oncol. 2014, 31, 191.

    Google Scholar 

  107. [107]

    Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279.

    Google Scholar 

  108. [108]

    Kreiter, S.; Diken, M.; Selmi, A.; Türeci, Ö.; Sahin, U. Tumor vaccination using messenger RNA: Prospects of a future therapy. Curr. Opin. Immunol. 2011, 23, 399–406.

    Google Scholar 

  109. [109]

    Kyte, J. A.; Aamdal, S.; Dueland, S.; Sæbøe–Larsen, S.; Inderberg, E. M.; Madsbu, U. E.; Skovlund, E.; Gaudernack, G.; Kvalheim, G. Immune response and long–term clinical outcome in advanced melanoma patients vaccinated with tumor–mRNA–transfected dendritic cells. Oncoimmunology 2016, 5, e1232237.

    Google Scholar 

  110. [110]

    Kaczmarek, J. C.; Kowalski, P. S.; Anderson, D. G. Advances in the delivery of RNA therapeutics: From concept to clinical reality. Genome Med. 2017, 9, 60.

    Google Scholar 

  111. [111]

    Carralot, J. P.; Probst, J.; Hoerr, I.; Scheel, B.; Teufel, R.; Jung, G.; Rammensee, H. G.; Pascolo, S. Polarization of immunity induced by direct injection of naked sequencestabilized mRNA vaccines. Cell. Mol. Life Sci. 2004, 61, 2418–2424.

    Google Scholar 

  112. [112]

    Fotin–Mleczek, M.; Duchardt, K. M.; Lorenz, C.; Pfeiffer, R.; Ojkić–Zrna, S.; Probst, J.; Kallen, K. J. Messenger RNA–based vaccines with dual activity induce balanced TLR–7 dependent adaptive immune responses and provide antitumor activity. J. Immunother. 2011, 34, 1–15.

    Google Scholar 

  113. [113]

    Fotin–Mleczek, M.; Zanzinger, K.; Heidenreich, R.; Lorenz, C.; Thess, A.; Duchardt, K. M.; Kallen, K. J. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J. Gene Med. 2012, 14, 428–439.

    Google Scholar 

  114. [114]

    Van Lint, S.; Goyvaerts, C.; Maenhout, S.; Goethals, L.; Disy, A.; Benteyn, D.; Pen, J.; Bonehill, A.; Heirman, C.; Breckpot, K. et al. Preclinical evaluation of TriMix and antigen mRNA–based antitumor therapy. Cancer Res. 2012, 72, 1661–1671.

    Google Scholar 

  115. [115]

    Fotin–Mleczek, M.; Zanzinger, K.; Heidenreich, R.; Lorenz, C.; Kowalczyk, A.; Kallen, K. J.; Huber, S. M. mRNA–based vaccines synergize with radiation therapy to eradicate established tumors. Radiat. Oncol. 2014, 9, 180.

    Google Scholar 

  116. [116]

    Motzer, R. J.; Escudier, B.; Bukowski, R.; Rini, B. I.; Hutson, T. E.; Barrios, C. H.; Lin, X.; Fly, K.; Matczak, E.; Gore, M. E. Prognostic factors for survival in 1059 patients treated with sunitinib for metastatic renal cell carcinoma. Br. J. Cancer 2013, 108, 2470–2477.

    Google Scholar 

  117. [117]

    Wang, Y. H.; Zhang, L.; Xu, Z. H.; Miao, L.; Huang, L. mRNA vaccine with antigen–specific checkpoint blockade induces an enhanced immune response against established melanoma. Mol. Ther. 2018, 26, 420–434.

    Google Scholar 

  118. [118]

    Liu, L.; Wang, Y. H.; Miao, L.; Liu, Q.; Musetti, S.; Li, J.; Huang, L. Combination immunotherapy of MUC1 mRNA nano–vaccine and CTLA–4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther. 2018, 26, 45–55.

    Google Scholar 

  119. [119]

    Wilgenhof, S.; Corthals, J.; Heirman, C.; van Baren, N.; Lucas, S.; Kvistborg, P.; Thielemans, K.; Neyns, B. Phase II study of autologous monocyte–derived mRNA electroporated dendritic cells (TriMixDC–MEL) plus ipilimumab in patients with pretreated advanced melanoma. J. Clin. Oncol. 2016, 34, 1330–1338.

    Google Scholar 

  120. [120]

    Diken, M.; Kreiter, S.; Kloke, B.; Sahin, U. Current developments in actively personalized cancer vaccination with a focus on RNA as the drug format. Prog. Tumor Res. 2015, 42, 44–54.

    Google Scholar 

  121. [121]

    Boisguérin, V.; Castle, J. C.; Loewer, M.; Diekmann, J.; Mueller, F.; Britten, C. M.; Kreiter, S.; Türeci, Ö.; Sahin, U. Translation of genomics–guided RNA–based personalised cancer vaccines: Towards the bedside. Br. J. Cancer 2014, 111, 1469–1475.

    Google Scholar 

  122. [122]

    Chahal, J. S.; Khan, O. F.; Cooper, C. L.; McPartlan, J. S.; Tsosie, J. K.; Tilley, L. D.; Sidik, S. M.; Lourido, S.; Langer, R.; Bavari, S. et al. Dendrimer–RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl. Acad. Sci. USA 2016, 113, E4133–E4142.

    Google Scholar 

  123. [123]

    Chen, Z. Y.; Wang, W. J.; Zhou, H. L.; Suguitan, A. L., Jr.; Shambaugh, C.; Kim, L.; Zhao, J.; Kemble, G.; Jin, H. Generation of live attenuated novel influenza virus a/california/7/09 (H1N1) vaccines with high yield in embryonated chicken eggs. J. Virol. 2010, 84, 44–51.

    Google Scholar 

  124. [124]

    Wurm, F. M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 2004, 22, 1393–1398.

    Google Scholar 

  125. [125]

    Allard, S. D.; De Keersmaecker, B.; de Goede, A. L.; Verschuren, E. J.; Koetsveld, J.; Reedijk, M. L.; Wylock, C.; De Bel, A. V.; Vandeloo, J.; Pistoor, F. et al. A phase I/IIa immunotherapy trial of HIV–1–infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin. Immunol. 2012, 142, 252–268.

    Google Scholar 

  126. [126]

    Deering, R. P.; Kommareddy, S.; Ulmer, J. B.; Brito, L. A.; Geall, A. J. Nucleic acid vaccines: Prospects for non–viral delivery of mRNA vaccines. Expert Opin. Drug Deliv. 2014, 11, 885–899.

    Google Scholar 

  127. [127]

    Brito, L. A.; Kommareddy, S.; Maione, D.; Uematsu, Y.; Giovani, C.; Berlanda Scorza, F.; Otten, G. R.; Yu, D.; Mandl, C. W.; Mason, P. W. et al. Self–amplifying mRNA vaccines. Adv. Genet 2015, 89, 179–233.

    Google Scholar 

  128. [128]

    Démoulins, T.; Ebensen, T.; Schulze, K.; Englezou, P. C.; Pelliccia, M.; Guzmán, C. A.; Ruggli, N.; McCullough, K. C. Self–replicating RNA vaccine functionality modulated by fine–tuning of polyplex delivery vehicle structure. J. Control. Release 2017, 266, 256–271.

    Google Scholar 

  129. [129]

    Fischer, D.; Bieber, T.; Li, Y. X.; Elsässer, H. P.; Kissel, T. A novel non–viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: Effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 1999, 16, 1273–1279.

    Google Scholar 

  130. [130]

    Xu, Y. H.; Hui, S. W.; Frederik, P.; Szoka, F. C. Physicochemical characterization and purification of cationic lipoplexes. Biophys. J. 1999, 77, 341–353.

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 81673362 and 81690261).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xun Sun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Sun, X. Recent advances in mRNA vaccine delivery. Nano Res. 11, 5338–5354 (2018). https://doi.org/10.1007/s12274-018-2091-z

Download citation

Keywords

  • messenger RNA (mRNA) vaccines
  • delivery systems
  • polymer
  • lipid