Skip to main content

Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs

Abstract

The controlled release of therapeutics from microparticles or nanoparticles (NPs) has been well-studied. Incorporation of these particles inside biomaterial scaffolds is promising for tissue regeneration and immune modulation. However, these particles may induce inflammatory and foreign body responses to scaffold constructs, limiting their applications. Here we show that widely used poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) formed by double emulsion dramatically increased neutrophil infiltration and pro-inflammatory cytokines in alginate scaffolds 1 day after the subcutaneous injection of the scaffolds into mice. The coating of red blood cell (RBC) membranes on PLGA NPs completely eliminated these short-term inflammatory responses. For a longer term of 10 days, neither PLGA NPs nor RBC membrane-coated NPs exerted a significant effect on the infiltration of neutrophils or macrophages in alginate scaffolds, possibly due to the degradation and/or clearance of NPs by infiltrating cells. Despite the extensive exploration of cell membrane-coated NPs, our study is the first to investigate the effects of cell membrane coating on foreign body reaction to NPs. By harnessing the natural biocompatibility of cell membranes, our strategy of anti-inflammatory protection for scaffolds may be pivotal for many applications such as those relying on the recruitment of stem cells and/or progenitor cells to scaffolds.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Teng, Y. D.; Lavik, E. B.; Qu, X. L.; Park, K. I.; Ourednik, J.; Zurakowski, D.; Langer, R.; Snyder, E. Y. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl. Acad. Sci. USA 2002, 99, 3024–3029.

    Article  Google Scholar 

  2. [2]

    Li, W. J.; Tuli, R.; Okafor, C.; Derfoul, A.; Danielson, K. G.; Hall, D. J.; Tuan, R. S. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2005, 26, 599–609.

    Article  Google Scholar 

  3. [3]

    Ali, O. A.; Huebsch, N.; Cao, L.; Dranoff, G.; Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 2009, 8, 151–158.

    Article  Google Scholar 

  4. [4]

    Sheridan, M. H.; Shea, L. D.; Peters, M. C.; Mooney, D. J. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J. Control. Release 2000, 64, 91–102.

    Article  Google Scholar 

  5. [5]

    Lee, K. Y.; Peters, M. C.; Anderson, K. W.; Mooney, D. J. Controlled growth factor release from synthetic extracellular matrices. Nature 2000, 408, 998–1000.

    Article  Google Scholar 

  6. [6]

    Lutolf, M. R.; Weber, F. E.; Schmoekel, H. G.; Schense, J. C.; Kohler, T.; Müller, R.; Hubbell, J. A. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 2003, 21, 513–518.

    Article  Google Scholar 

  7. [7]

    Elbert, D. L.; Pratt, A. B.; Lutolf, M. P.; Halstenberg, S.; Hubbell, J. A. Protein delivery from materials formed by self-selective conjugate addition reactions. J. Control. Release 2001, 76, 11–25.

    Article  Google Scholar 

  8. [8]

    Seliktar, D.; Zisch, A. H.; Lutolf, M. P.; Wrana, J. L.; Hubbell, J. A. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J. Biomed. Mater. Res. A 2004, 68, 704–716.

    Article  Google Scholar 

  9. [9]

    Martino, M. M.; Briquez, P. S.; Ranga, A.; Lutolf, M. P.; Hubbell, J. A. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. USA 2013, 110, 4563–4568.

    Article  Google Scholar 

  10. [10]

    Purcell, B. P.; Lobb, D.; Charati, M. B.; Dorsey, S. M.; Wade, R. J.; Zellars, K. N.; Doviak, H.; Pettaway, S.; Logdon, C. B.; Shuman, J. A. et al. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat. Mater. 2014, 13, 653–661.

    Article  Google Scholar 

  11. [11]

    Richardson, T. P.; Peters, M. C.; Ennett, A. B.; Mooney, D. J. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 2001, 19, 1029–1034.

    Article  Google Scholar 

  12. [12]

    Li, S. R.; Nih, L. R.; Bachman, H.; Fei, P.; Li, Y. L.; Nam, E.; Dimatteo, R.; Carmichael, S. T.; Barker, T. H.; Segura, T. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nat. Mater. 2017, 16, 953–961.

    Article  Google Scholar 

  13. [13]

    Vacanti, N. M.; Cheng, H.; Hill, P. S.; Guerreiro, J. D. T.; Dang, T. T.; Ma, M. L.; Watson, S.; Hwang, N. S.; Langer, R.; Anderson, D. G. Localized delivery of dexamethasone from electrospun fibers reduces the foreign body response. Biomacromolecules 2012, 13, 3031–3038.

    Article  Google Scholar 

  14. [14]

    Tan, Q.; Tang, H.; Hu, J. G.; Hu, Y. R.; Zhou, X. M.; Tao, Y. M.; Wu, Z. S. Controlled release of chitosan/heparin nanoparticle-delivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds. Int. J. Nanomed. 2011, 6, 929–942.

    Article  Google Scholar 

  15. [15]

    Holland, T. A.; Bodde, E. W. H.; Cuijpers, V. M. J. I.; Baggett, L. S.; Tabata, Y.; Mikos, A. G.; Jansen, J. A. Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthritis Cartilage 2007, 15, 187–197.

    Article  Google Scholar 

  16. [16]

    Hosseinkhani, H.; Hosseinkhani, M.; Gabrielson, N. P.; Pack, D. W.; Khademhosseini, A.; Kobayashi, H. DNA nanoparticles encapsulated in 3D tissue-engineered scaffolds enhance osteogenic differentiation of mesenchymal stem cells. J. Biomed. Mater. Res. A 2008, 85, 47–60.

    Article  Google Scholar 

  17. [17]

    Hedberg, E. L.; Tang, A.; Crowther, R. S.; Carney, D. H.; Mikos, A. G. Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites. J. Control. Release 2002, 84, 137–150.

    Article  Google Scholar 

  18. [18]

    Verbeke, C. S.; Gordo, S.; Schubert, D. A.; Lewin, S. A.; Desai, R. M.; Dobbins, J.; Wucherpfennig, K. W.; Mooney, D. J. Multicomponent injectable hydrogels for antigenspecific tolerogenic immune modulation. Adv. Healthc. Mater. 2017, 6, 1600773.

    Article  Google Scholar 

  19. [19]

    Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration. Nature 2008, 453, 314–321.

    Article  Google Scholar 

  20. [20]

    Anderson, J. M.; Rodriguez, A.; Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100.

    Article  Google Scholar 

  21. [21]

    Anderson, J. M. Biological responses to materials. Ann. Rev. Mater. Res. 2001, 31, 81–110.

    Article  Google Scholar 

  22. [22]

    Anderson, J. M.; McNally, A. K. Biocompatibility of implants: Lymphocyte/macrophage interactions. Semin. Immunopathol. 2011, 33, 221–233.

    Article  Google Scholar 

  23. [23]

    Kim, Y. K.; Chen, E. Y.; Liu, W. F. Biomolecular strategies to modulate the macrophage response to implanted materials. J. Mater. Chem. B 2016, 4, 1600–1609.

    Article  Google Scholar 

  24. [24]

    Zhang, L.; Cao, Z. Q.; Bai, T.; Carr, L.; Ella-Menye, J. R.; Irvin, C.; Ratner, B. D.; Jiang, S. Y. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 2013, 31, 553–556.

    Article  Google Scholar 

  25. [25]

    Vegas, A. J.; Veiseh, O.; Doloff, J. C.; Ma, M. L.; Tam, H. H.; Bratlie, K.; Li, J.; Bader, A. R.; Langan, E.; Olejnik, K. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 2016, 34, 345–352.

    Article  Google Scholar 

  26. [26]

    Chen, E. Y.; Chu, S. H.; Gov, L.; Kim, Y. K.; Lodoen, M. B.; Tenner, A. J.; Liu, W. F. CD200 modulates macrophage cytokine secretion and phagocytosis in response to poly(lacticco-glycolic acid) microparticles and films. J. Mat. Chem. B 2017, 5, 1574–1584.

    Article  Google Scholar 

  27. [27]

    Wu, Y. Q.; Qu, H. C.; Sfyroera, G.; Tzekou, A.; Kay, B. K.; Nilsson, B.; Ekdahl, K. N.; Ricklin, D.; Lambris, J. D. Correction: Protection of nonself surfaces from complement attack by factor H-binding peptides: Implications for therapeutic medicine. J. Immunol. 2012, 188, 6425.

    Article  Google Scholar 

  28. [28]

    Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.

    Article  Google Scholar 

  29. [29]

    Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

    Article  Google Scholar 

  30. [30]

    Hu, Q. Y.; Sun, W. J.; Qian, C. G.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 2015, 27, 7043–7050.

    Article  Google Scholar 

  31. [31]

    Gao, M.; Liang, C.; Song, X. J.; Chen, Q.; Jin, Q. T.; Wang, C.; Liu, Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 2017, 29, 1701429.

    Article  Google Scholar 

  32. [32]

    Fan, Z. Y.; Zhou, H.; Li, P. Y.; Speer, J. E.; Cheng, H. Structural elucidation of cell membrane-derived nanoparticles using molecular probes. J. Mater. Chem. B 2014, 2, 8231–8238.

    Article  Google Scholar 

  33. [33]

    Zhou, H.; Fan, Z. Y.; Lemons, P. K.; Cheng, H. A facile approach to functionalize cell membrane-coated nanoparticles. Theranostics 2016, 6, 1012–1022.

    Article  Google Scholar 

  34. [34]

    Fang, R. H.; Hu, C. M. J.; Luk, B. T.; Gao, W. W.; Copp, J. A.; Tai, Y. Y.; O'Connor, D. E.; Zhang, L. F. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014, 14, 2181–2188.

    Article  Google Scholar 

  35. [35]

    Xuan, M. J.; Shao, J. X.; Zhao, J.; Li, Q.; Dai, L. R.; Li, J. B. Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: Applications in cancer therapy. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.201712996.

  36. [36]

    Li, P. Y.; Fan, Z. Y.; Cheng, H. Cell membrane bioconjugation and membrane-derived nanomaterials for immunotherapy. Bioconjug. Chem. 2018, 29, 624–634.

    Article  Google Scholar 

  37. [37]

    Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater., in press, DOI: 10.1002/adma.201706759.

  38. [38]

    Oldenborg, P. A.; Zheleznyak, A.; Fang, Y. F.; Lagenaur, C. F.; Gresham, H. D.; Lindberg, F. P. Role of CD47 as a marker of self on red blood cells. Science 2000, 288, 2051–2054.

    Article  Google Scholar 

  39. [39]

    Bencherif, S. A.; Sands, R. W.; Bhatta, D.; Arany, P.; Verbeke, C. S.; Edwards, D. A.; Mooney, D. J. Injectable preformed scaffolds with shape-memory properties. Proc. Natl. Acad. Sci. USA 2012, 109, 19590–19595.

    Article  Google Scholar 

  40. [40]

    Copp, J. A.; Fang, R. H.; Luk, B. T.; Hu, C. M. J.; Gao, W. W.; Zhang, K.; Zhang, L. F. Clearance of pathological antibodies using biomimetic nanoparticles. Proc. Natl. Acad. Sci. USA 2014, 111, 13481–13486.

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by a faculty startup fund from Drexel University to H. C., a pilot grant from the Clinical & Translational Research Institute (CTRI), and National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R21AI133372. We would like to thank Dr. Elizabeth Blankenhorn and Dr. Frank Bearoff for their help on real-time PCR analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hao Cheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Li, P.Y., Deng, J. et al. Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. Nano Res. 11, 5573–5583 (2018). https://doi.org/10.1007/s12274-018-2084-y

Download citation

Keywords

  • regenerative medicine
  • wound healing
  • drug delivery
  • endothelial cell
  • immune tolerance