Nano Research

, Volume 11, Issue 6, pp 3065–3087 | Cite as

Recent progress on printable power supply devices and systems with nanomaterials

  • Yuanjing Lin
  • Yuan Gao
  • Fang FangEmail author
  • Zhiyong FanEmail author
Review Article


In recent years, tremendous research interest has been triggered in the fields of flexible, wearable and miniaturized power supply devices and self-powered energy sources, in which energy harvesting/conversion devices are integrated with energy storage devices into an infinitely self-powered energy system. As opposed to conventional fabrication methods, printing techniques hold promising potency for fabrication of power supply devices with practical scalability and versatility, especially for applications in wearable and portable electronics. To further enhance the performance of the as-fabricated devices, the utilization of nanomaterials is one of the promising strategies, owing to their unique properties. In this review, an overview on the progress of printable strategies to revolutionize the fabrication of power supply devices and integrated system with attractive form factors is provided. The advantages and limitations of the commonly adopted printing techniques for power supply device fabrication are first summarized. Thereafter, the research progress on novel developed printable energy harvesting and conversion devices, including solar cells, nanogenerators and biofuel cells, and the research advances on printable energy storage devices, namely, supercapacitors and rechargeable batteries, are presented, respectively. Although exciting advances on printable material modification, innovative fabrication methods and device performance improvement have been witnessed, there are still several challenges to be addressed to realize fully printable fabrication of integrated self-powered energy sources.


printing techniques energy conversion energy storage integrated self-powered system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge financial support from National Natural Science Foundation of China (No. 51672231), Hong Kong Research Grant Council (General Research Fund Project No. 16237816), and Center for 1D/2D Quantum Materials and State Key Laboratory on Advanced Displays and Optoelectronics at HKUST.


  1. [1]
    Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.CrossRefGoogle Scholar
  2. [2]
    Jia, W. Z.; Wang, X.; Imani, S.; Bandodkar, A. J.; Ramírez, J.; Mercier, P. P.; Wang, J. Wearable textile biofuel cells for powering electronics. J. Mater. Chem. A 2014, 2, 18184–18189.CrossRefGoogle Scholar
  3. [3]
    Honda, W.; Harada, S.; Arie, T.; Akita, S.; Takei, K. Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv. Funct. Mater. 2014, 24, 3299–3304.CrossRefGoogle Scholar
  4. [4]
    Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404.CrossRefGoogle Scholar
  5. [5]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.CrossRefGoogle Scholar
  6. [6]
    Kim, J.; Kumar, R.; Bandodkar, A. J.; Wang, J. Advanced materials for printed wearable electrochemical devices: A review. Adv. Electron. Mater. 2017, 3, 1600260.CrossRefGoogle Scholar
  7. [7]
    Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.CrossRefGoogle Scholar
  8. [8]
    Leung, S. F.; Tsui, K. H.; Lin, Q. F.; Huang, H. T.; Lu, L. F.; Shieh, J. M.; Shen, C. H.; Hsu, C. H.; Zhang, Q. P.; Li, D. D. et al. Large scale, flexible and three-dimensional quasi-ordered aluminum nanospikes for thin film photovoltaics with omnidirectional light trapping and optimized electrical design. Energy Environ. Sci. 2014, 7, 3611–3616.CrossRefGoogle Scholar
  9. [9]
    Lin, Q. F.; Lu, L. F.; Tavakoli, M. M.; Zhang, C.; Lui, G. C.; Chen, Z.; Chen, X. Y.; Tang, L.; Zhang, D. Q.; Lin, Y. J. et al. High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility. Nano Energy 2016, 22, 539–547.CrossRefGoogle Scholar
  10. [10]
    Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.CrossRefGoogle Scholar
  11. [11]
    Sakai, H.; Nakagawa, T.; Tokita, Y.; Hatazawa, T.; Ikeda, T.; Tsujimura, S.; Kano, K. A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energy Environ. Sci. 2009, 2, 133–138.CrossRefGoogle Scholar
  12. [12]
    Jia, W. Z.; Valdés-Ramírez, G.; Bandodkar, A. J.; Windmiller, J. R.; Wang, J. Epidermal biofuel cells: Energy harvesting from human perspiration. Angew. Chem., Int. Ed. 2013, 52, 7233–7236.CrossRefGoogle Scholar
  13. [13]
    Um, H. D.; Choi, K. H.; Hwang, I.; Kim, S. H.; Seo, K.; Lee, S. Y. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ. Sci. 2017, 10, 931–940.CrossRefGoogle Scholar
  14. [14]
    Liu, R. Y.; Liu, Y. Q.; Zou, H. Y.; Song, T.; Sun, B. Q. Integrated solar capacitors for energy conversion and storage. Nano Res. 2017, 10, 1545–1559.CrossRefGoogle Scholar
  15. [15]
    Kyeremateng, N. A.; Brousse, T.; Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 2017, 12, 7–15.CrossRefGoogle Scholar
  16. [16]
    Pech, D.; Brunet, M.; Taberna, P. L.; Simon, P.; Fabre, N.; Mesnilgrente, F.; Conédéra, V.; Durou, H. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 2010, 195, 1266–1269.CrossRefGoogle Scholar
  17. [17]
    Gu, L. L.; Tavakoli, M. M.; Zhang, D. Q.; Zhang, Q. P.; Waleed, A.; Xiao, Y. Q.; Tsui, K. H.; Lin, Y. J.; Liao, L.; Wang, J. N. et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 2016, 28, 9713–9721.CrossRefGoogle Scholar
  18. [18]
    Lin, Q. F.; Sarkar, D.; Lin, Y. J.; Yeung, M.; Blankemeier, L.; Hazra, J.; Wang, W.; Niu, S. Y.; Ravichandran, J.; Fan, Z. Y. et al. Scalable indium phosphide thin-film nanophotonics platform for photovoltaic and photoelectrochemical devices. ACS Nano 2017, 11, 5113–5119.CrossRefGoogle Scholar
  19. [19]
    Gao, Y.; Jin, H. Y.; Lin, Q. F.; Li, X.; Tavakoli, M. M.; Leung, S. F.; Tang, W. M.; Zhou, L. M.; Chan, H. L. W.; Fan, Z. Y. Highly flexible and transferable supercapacitors with ordered three-dimensional MnO2/Au/MnO2 nanospike arrays. J. Mater. Chem. A 2015, 3, 10199–10204.CrossRefGoogle Scholar
  20. [20]
    Fan, Z. Y.; Ruebusch, D. J.; Rathore, A. A.; Kapadia, R.; Ergen, O.; Leu, P. W.; Javey, A. Challenges and prospects of nanopillar-based solar cells. Nano Res. 2009, 2, 829–843.CrossRefGoogle Scholar
  21. [21]
    Cao, X.; Chen, H. T.; Gu, X. F.; Liu, B. L.; Wang, W. L.; Cao, Y.; Wu, F. Q.; Zhou, C. W. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano 2014, 8, 12769–12776.CrossRefGoogle Scholar
  22. [22]
    Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Inkjet printing—Process and its applications. Adv. Mater. 2010, 22, 673–685.CrossRefGoogle Scholar
  23. [23]
    Li, L.; Wu, Z.; Yuan, S.; Zhang, X. B. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 2014, 7, 2101–2122.CrossRefGoogle Scholar
  24. [24]
    Yu, X.; Marks, T. J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383–396.CrossRefGoogle Scholar
  25. [25]
    Beidaghi, M.; Gogotsi, Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 2014, 7, 867–884.CrossRefGoogle Scholar
  26. [26]
    Zhu, C.; Liu, T. Y.; Qian, F.; Chen, W.; Chandrasekaran, S.; Yao, B.; Song, Y.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M. et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 2017, 15, 107–120.CrossRefGoogle Scholar
  27. [27]
    Zhang, F.; Wei, M.; Viswanathan, V. V.; Swart, B.; Shao, Y. Y.; Wu, G.; Zhou, C. 3D printing technologies for electrochemical energy storage. Nano Energy 2017, 40, 418–431.CrossRefGoogle Scholar
  28. [28]
    Noh, Y. Y.; Zhao, N.; Caironi, M.; Sirringhaus, H. Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat. Nanotechnol. 2007, 2, 784–789.CrossRefGoogle Scholar
  29. [29]
    Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123–2126.CrossRefGoogle Scholar
  30. [30]
    Sekitani, T.; Noguchi, Y.; Zschieschang, U.; Klauk, H.; Someya, T. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc. Natl. Acad. Sci. USA 2008, 105, 4976–4980.CrossRefGoogle Scholar
  31. [31]
    Torrisi, F.; Hasan, T.; Wu, W. P.; Sun, Z. P.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.; Jung, S.; Bonaccorso, F.; Paul, P. J. et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992–3006.CrossRefGoogle Scholar
  32. [32]
    Azzellino, G.; Grimoldi, A.; Binda, M.; Caironi, M.; Natali, D.; Sampietro, M. Fully inkjet-printed organic photodetectors with high quantum yield. Adv. Mater. 2013, 25, 6829–6833.CrossRefGoogle Scholar
  33. [33]
    Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4007.CrossRefGoogle Scholar
  34. [34]
    Ota, H.; Chao, M. H.; Gao, Y. J.; Wu, E.; Tai, L. C.; Chen, K.; Matsuoka, Y.; Iwai, K.; Fahad, H. M.; Gao, W. et al. 3D printed “Earable” smart devices for real-time detection of core body temperature. ACS Sens. 2017, 2, 990–997.CrossRefGoogle Scholar
  35. [35]
    Rim, Y. S.; Bae, S. H.; Chen, H. J.; De Marco, N.; Yang, Y. Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 2016, 28, 4415–4440.CrossRefGoogle Scholar
  36. [36]
    Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H. Y. Y.; Takei, K.; Javey, A. Printed carbon nanotube electronics and sensor systems. Adv. Mater. 2016, 28, 4397–4414.CrossRefGoogle Scholar
  37. [37]
    Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. Allorganic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. 2010, 122, 2200–2203.CrossRefGoogle Scholar
  38. [38]
    Jang, J.; Ha, J.; Cho, J. Fabrication of water-dispersible polyaniline - poly (4 - styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv. Mater. 2007, 19, 1772–1775.CrossRefGoogle Scholar
  39. [39]
    Nomura, K.; Kaji, R.; Iwata, S.; Otao, S.; Imawaka, N.; Yoshino, K.; Mitsui, R.; Sato, J.; Takahashi, S.; Nakajima, S. et al. A flexible proximity sensor formed by duplex screen/ screen-offset printing and its application to non-contact detection of human breathing. Sci. Rep. 2016, 6, 19947.CrossRefGoogle Scholar
  40. [40]
    Khan, S.; Lorenzelli, L.; Dahiya, R. S. Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sens. J. 2015, 15, 3164–3185.CrossRefGoogle Scholar
  41. [41]
    Kuroda Electric Home Page. Ultra-Fine-Pattern-Screen-Printing (accessed Feb 2, 2018).Google Scholar
  42. [42]
    Jost, K.; Stenger, D.; Perez, C. R.; McDonough, J. K.; Lian, K.; Gogotsi, Y.; Dion, G. Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ. Sci. 2013, 6, 2698–2705.CrossRefGoogle Scholar
  43. [43]
    Chen, P.; Chen, H. T.; Qiu, J.; Zhou, C. W. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3, 594–603.CrossRefGoogle Scholar
  44. [44]
    de Gans, B. J.; Duineveld, P. C.; Schubert, U. S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 2004, 16, 203–213.CrossRefGoogle Scholar
  45. [45]
    Kumar, B.; Tan, H. S.; Ramalingam, N.; Mhaisalkar, S. G. Integration of ink jet and transfer printing for device fabrication using nanostructured materials. Carbon 2009, 47, 321–324.CrossRefGoogle Scholar
  46. [46]
    Kawahara, Y.; Hodges, S.; Cook, B. S.; Zhang, C.; Abowd, G. D. Instant inkjet circuits: Lab-based inkjet printing to support rapid prototyping of UbiComp devices. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 2013, pp 363–372.Google Scholar
  47. [47]
    Siegel, A. C.; Phillips, S. T.; Dickey, M. D.; Lu, N. S.; Suo, Z. G.; Whitesides, G. M. Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 2010, 20, 28–35.CrossRefGoogle Scholar
  48. [48]
    Yang, C.; Cui, X. Y.; Zhang, Z. X.; Chiang, S. W.; Lin, W.; Duan, H.; Li, J.; Kang, F. Y.; Wong, C. P. Fractal dendrite-based electrically conductive composites for laserscribed flexible circuits. Nat. Commun. 2015, 6, 8150.CrossRefGoogle Scholar
  49. [49]
    Hoth, C. N.; Choulis, S. A.; Schilinsky, P.; Brabec, C. J. High photovoltaic performance of inkjet printed polymer: Fullerene blends. Adv. Mater. 2007, 19, 3973–3978.CrossRefGoogle Scholar
  50. [50]
    Kim, K.; Zhu, W.; Qu, X.; Aaronson, C.; McCall, W. R.; Chen, S. C.; Sirbuly, D. J. 3D optical printing of piezoelectric nanoparticle–polymer composite materials. ACS Nano 2014, 8, 9799–9806.CrossRefGoogle Scholar
  51. [51]
    Fu, K.; Yao, Y. G.; Dai, J. Q.; Hu, L. B. Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 2017, 29, 1603486.CrossRefGoogle Scholar
  52. [52]
    Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 2013, 25, 4539–4543.CrossRefGoogle Scholar
  53. [53]
    Zhang, B.; Seong, B.; Nguyen, V.; Byun, D. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J. Micromech. Microeng. 2016, 26, 025015.CrossRefGoogle Scholar
  54. [54]
    Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.CrossRefGoogle Scholar
  55. [55]
    Zhang, Y. L.; Guo, L.; Wei, S.; He, Y. Y.; Xia, H.; Chen, Q. D.; Sun, H. B.; Xiao, F. S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 2010, 5, 15–20.CrossRefGoogle Scholar
  56. [56]
    Strong, V.; Dubin, S.; El-Kady, M. F.; Lech, A.; Wang, Y.; Weiller, B. H.; Kaner, R. B. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 2012, 6, 1395–1403.CrossRefGoogle Scholar
  57. [57]
    Huang, H. C.; Chung, C. J.; Hsieh, C. T.; Kuo, P. L.; Teng, H. Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon. Nano Energy 2016, 21, 90–105.CrossRefGoogle Scholar
  58. [58]
    El-Kady, M. F.; Ihns, M.; Li, M. P.; Hwang, J. Y.; Mousavi, M. F.; Chaney, L.; Lech, A. T.; Kaner, R. B. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. USA 2015, 112, 4233–4238.CrossRefGoogle Scholar
  59. [59]
    Torrisi, F.; Coleman, J. N. Electrifying inks with 2D materials. Nat. Nanotechnol. 2014, 9, 738–739.CrossRefGoogle Scholar
  60. [60]
    Cao, L. J.; Yang, S. B.; Gao, W.; Liu, Z.; Gong, Y. J.; Ma, L. L.; Shi, G.; Lei, S. D.; Zhang, Y H.; Zhang, S. T. et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 2013, 9, 2905–2910.CrossRefGoogle Scholar
  61. [61]
    Jung, M.; Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A. D. et al. All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Electron Devices 2010, 57, 571–580.CrossRefGoogle Scholar
  62. [62]
    Yang, L.; Rida, A.; Vyas, R.; Tentzeris, M. M. RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans. Microw. Theory Tech. 2007, 55, 2894–2901.CrossRefGoogle Scholar
  63. [63]
    Izumi, K.; Yoshida, Y.; Tokito, S. Improved fine layer patterning using soft blanket gravure printing technology. Flex. Print. Electron. 2018, 3, 015011.CrossRefGoogle Scholar
  64. [64]
    Sheng, X.; Bower, C. A.; Bonafede, S.; Wilson, J. W.; Fisher, B.; Meitl, M.; Yuen, H.; Wang, S. D.; Shen, L.; Banks, A. R. et al. Printing-based assembly of quadruplejunction four-terminal microscale solar cells and their use in high-efficiency modules. Nat. Mater. 2014, 13, 593–598.CrossRefGoogle Scholar
  65. [65]
    Hoey, J. M.; Lutfurakhmanov, A.; Schulz, D. L.; Akhatov, I. S. A review on aerosol-based direct-write and its applications for microelectronics. J. Nanotechnol. 2012, 2012, Article ID 324380.Google Scholar
  66. [66]
    Seifert, T.; Sowade, E.; Roscher, F.; Wiemer, M.; Gessner, T.; Baumann, R. R. Additive manufacturing technologies compared: Morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 2015, 54, 769–779.CrossRefGoogle Scholar
  67. [67]
    Bag, S.; Deneault, J. R.; Durstock, M. F. Aerosol-jet-assisted thin-film growth of CH3NH3PbI3 perovskites—A means to achieve high quality, defect-free films for efficient solar cells. Adv. Energy Mater. 2017, 7, 1701151.CrossRefGoogle Scholar
  68. [68]
    Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.CrossRefGoogle Scholar
  69. [69]
    Shaheen, S. E.; Radspinner, R.; Peyghambarian, N.; Jabbour, G. E. Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 2001, 79, 2996–2998.CrossRefGoogle Scholar
  70. [70]
    Guo, Q. J.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E. A.; Agrawal, R.; Hillhouse, H. W. Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett. 2008, 8, 2982–2987.CrossRefGoogle Scholar
  71. [71]
    Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A. Synthesis of CuInS2, CuInSe2, and Cu (InxGa1–x) Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J. Am. Chem. Soc. 2008, 130, 16770–16777.CrossRefGoogle Scholar
  72. [72]
    Kovalenko, M. V. Opportunities and challenges for quantum dot photovoltaics. Nat. Nanotechnol. 2015, 10, 994–997.CrossRefGoogle Scholar
  73. [73]
    Guo, F.; Li, N.; Radmilovic, V. V.; Radmilovic, V. R.; Turbiez, M.; Spiecker, E.; Forberich, K.; Brabec, C. J. Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. Energy Environ. Sci. 2015, 8, 1690–1697.CrossRefGoogle Scholar
  74. [74]
    Hashmi, S. G.; Ozkan, M.; Halme, J.; Misic, K. D.; Zakeeruddin, S. M.; Paltakari, J.; Grätzel, M.; Lund, P. D. High performance dye-sensitized solar cells with inkjet printed ionic liquid electrolyte. Nano Energy 2015, 17, 206–215.CrossRefGoogle Scholar
  75. [75]
    Hashmi, S. G.; Özkan, M.; Halme, J.; Zakeeruddin, S. M.; Paltakari, J.; Grätzel, M.; Lund, P. D. Dye-sensitized solar cells with inkjet-printed dyes. Energy Environ. Sci. 2016, 9, 2453–2462.CrossRefGoogle Scholar
  76. [76]
    Hashmi, S. G.; Martineau, D.; Li, X.; Ozkan, M.; Tiihonen, A.; Dar, M. I.; Sarikka, T.; Zakeeruddin, S. M.; Paltakari, J.; Lund, P. D. et al. Air processed inkjet infiltrated carbon based printed perovskite solar cells with high stability and reproducibility. Adv. Mater. Technol. 2017, 2, 1600183.CrossRefGoogle Scholar
  77. [77]
    Yang, Z. B.; Chueh, C. C.; Zuo, F.; Kim, J. H.; Liang, P. W.; Jen, A. K. Y. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 2015, 5, 1500328.CrossRefGoogle Scholar
  78. [78]
    Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.CrossRefGoogle Scholar
  79. [79]
    Etgar, L.; Gao, P.; Xue, Z. S.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.CrossRefGoogle Scholar
  80. [80]
    Ku, Z. L.; Rong, Y. G.; Xu, M.; Liu, T. F.; Han, H. W. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 2013, 3, 3132.CrossRefGoogle Scholar
  81. [81]
    Liu, L. F.; Mei, A. Y.; Liu, T. F.; Jiang, P.; Sheng, Y. S.; Zhang, L. J.; Han, H. W. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 2015, 137, 1790–1793.CrossRefGoogle Scholar
  82. [82]
    Xu, M.; Rong, Y. G.; Ku, Z. L.; Mei, A. Y.; Liu, T. F.; Zhang, L. J.; Li, X.; Han, H. W. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. J. Mater. Chem. A 2014, 2, 8607–8611.CrossRefGoogle Scholar
  83. [83]
    Hu, M.; Liu, L.; Mei, A.; Yang, Y.; Liu, T.; Han, H. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3. J. Mater. Chem. A 2014, 2, 17115–17121.CrossRefGoogle Scholar
  84. [84]
    Cao, K.; Zuo, Z. X.; Cui, J.; Shen, Y.; Moehl, T.; Zakeeruddin, S. M.; Grätzel, M.; Wang, M. K. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy 2015, 17, 171–179.CrossRefGoogle Scholar
  85. [85]
    Chen, J. Z.; Rong, Y. G.; Mei, A. Y.; Xiong, Y. L.; Liu, T. F.; Sheng, Y. S.; Jiang, P.; Hong, L.; Guan, Y. J.; Zhu, X. T. Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3–x)(BF4)x. Adv. Energy Mater. 2016, 6, 1502009.CrossRefGoogle Scholar
  86. [86]
    Hu, Y.; Si, S.; Mei, A. Y.; Rong, Y. G.; Liu, H. W.; Li, X.; Han, H. W. Stable large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Solar RRL 2017, 1, 1600019.CrossRefGoogle Scholar
  87. [87]
    Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367.CrossRefGoogle Scholar
  88. [88]
    Hoth, C. N.; Schilinsky, P.; Choulis, S. A.; Brabec, C. J. Printing highly efficient organic solar cells. Nano Lett. 2008, 8, 2806–2813.CrossRefGoogle Scholar
  89. [89]
    Yu, Y. L.; Nakano, M.; Ikeda, T. Photomechanics: Directed bending of a polymer film by light. Nature 2003, 425, 145.CrossRefGoogle Scholar
  90. [90]
    Galassi, C. Processing of porous ceramics: Piezoelectric materials. J. Eur. Ceram. Soc. 2006, 26, 2951–2958.CrossRefGoogle Scholar
  91. [91]
    Maas, R.; Koch, M.; Harris, N. R.; White, N. M.; Evans, A. G. R. Thick-film printing of PZT onto silicon. Mater. Lett. 1997, 31, 109–112.CrossRefGoogle Scholar
  92. [92]
    Emamian, S.; Narakathu, B. B.; Chlaihawi, A. A.; Bazuin, B. J.; Atashbar, M. Z. Screen printing of flexible piezoelectric based device on polyethylene terephthalate (PET) and paper for touch and force sensing applications. Sens. Actuators A: Phys. 2017, 263, 639–647.CrossRefGoogle Scholar
  93. [93]
    Lee, Y.; Kim, W.; Bhatia, D.; Hwang, H. J.; Lee, S.; Choi, D. Cam-based sustainable triboelectric nanogenerators with a resolution-free 3D-printed system. Nano Energy 2017, 38, 326–334.CrossRefGoogle Scholar
  94. [94]
    Jeerapan, I.; Sempionatto, J. R.; Pavinatto, A.; You, J. M.; Wang, J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A 2016, 4, 18342–18353.CrossRefGoogle Scholar
  95. [95]
    Kim, D.; Shin, G.; Kang, Y. J.; Kim, W.; Ha, J. S. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano 2013, 7, 7975–7982.CrossRefGoogle Scholar
  96. [96]
    Wang, K.; Zou, W. J.; Quan, B. G.; Yu, A. F.; Wu, H. P.; Jiang, P.; Wei, Z. X. An all-solid-state flexible microsupercapacitor on a chip. Adv. Energy Mater. 2011, 1, 1068–1072.CrossRefGoogle Scholar
  97. [97]
    El-Kady, M. F.; Kaner, R. B. Scalable fabrication of highpower graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.CrossRefGoogle Scholar
  98. [98]
    Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500.CrossRefGoogle Scholar
  99. [99]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  100. [100]
    Jayalakshmi, M.; Balasubramanian, K. Simple capacitors to supercapacitors—An overview. Int. J. Electrochem. Sci. 2008, 3, 1196–1217.Google Scholar
  101. [101]
    Hu, L. B.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L. F.; Cui, Y. Highly conductive paper for energystorage devices. Proc. Natl. Acad. Sci. USA 2009, 106, 21490–21494.CrossRefGoogle Scholar
  102. [102]
    Jost, K.; Perez, C. R.; McDonough, J. K.; Presser, V.; Heon, M.; Dion, G.; Gogotsi, Y. Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 2011, 4, 5060–5067.CrossRefGoogle Scholar
  103. [103]
    Le, L. T.; Ervin, M. H.; Qiu, H. W.; Fuchs, B. E.; Lee, W. Y. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 2011, 13, 355–358.CrossRefGoogle Scholar
  104. [104]
    Bandodkar, A. J.; López, C. S.; Mohan, A. M. V.; Yin, L.; Kumar, R.; Wang, J. All-printed magnetically self-healing electrochemical devices. Sci. Adv. 2016, 2, e1601465.CrossRefGoogle Scholar
  105. [105]
    Li, R. Z.; Peng, R.; Kihm, K. D.; Bai, S.; Bridges, D.; Tumuluri, U.; Wu, Z.; Zhang, T.; Compagnini, G.; Feng, Z. et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ. Sci. 2016, 9, 1458–1467.CrossRefGoogle Scholar
  106. [106]
    Choi, K. H.; Yoo, J.; Lee, C. K.; Lee, S. Y. All-inkjetprinted, solid-state flexible supercapacitors on paper. Energy Environ. Sci. 2016, 9, 2812–2821.CrossRefGoogle Scholar
  107. [107]
    Cai, J. G.; Lv, C.; Watanabe, A. Cost-effective fabrication of high-performance flexible all-solid-state carbon microsupercapacitors by blue-violet laser direct writing and further surface treatment. J. Mater. Chem. A 2016, 4, 1671–1679.CrossRefGoogle Scholar
  108. [108]
    Pang, H.; Zhang, Y. Z.; Lai, W. Y.; Hu, Z.; Huang, W. Lamellar K2Co3(P2O7)2·2H2O nanocrystal whiskers: Highperformance flexible all-solid-state asymmetric microsupercapacitors via inkjet printing. Nano Energy 2015, 15, 303–312.CrossRefGoogle Scholar
  109. [109]
    Li, Y.; Fu, Z. Y.; Su, B. L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 2012, 22, 4634–4667.CrossRefGoogle Scholar
  110. [110]
    Li, H.; Tao, Y.; Zheng, X. Y.; Luo, J. Y.; Kang, F. Y.; Cheng, H. M.; Yang, Q. H. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 2016, 9, 3135–3142.CrossRefGoogle Scholar
  111. [111]
    Vu, A.; Qian, Y. Q.; Stein, A. Porous electrode materials for lithium-ion batteries—How to prepare them and what makes them special. Adv. Energy Mater. 2012, 2, 1056–1085.CrossRefGoogle Scholar
  112. [112]
    Blake, A. J.; Kohlmeyer, R. R.; Hardin, J. O.; Carmona, E. A.; Maruyama, B.; Berrigan, J. D.; Huang, H.; Durstock, M. F. 3D printable ceramic–polymer electrolytes for flexible high-performance Li-ion batteries with enhanced thermal stability. Adv. Energy Mater. 2017, 7, 1602920.CrossRefGoogle Scholar
  113. [113]
    Ning, H. L.; Pikul, J. H.; Zhang, R. Y.; Li, X. J.; Xu, S.; Wang, J. J.; Rogers, J. A.; King, W. P.; Braun, P. V. Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. USA 2015, 112, 6573–6578.CrossRefGoogle Scholar
  114. [114]
    Zhu, C.; Liu, T. Y.; Qian, F.; Han, T. Y. J.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448–3456.CrossRefGoogle Scholar
  115. [115]
    El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.CrossRefGoogle Scholar
  116. [116]
    Lin, Y. J.; Gao, Y.; Fan, Z. Y. Printable fabrication of nanocoral-structured electrodes for high-performance flexible and planar supercapacitor with artistic design. Adv. Mater. 2017, 29, 1701736.CrossRefGoogle Scholar
  117. [117]
    Zhao, C.; Wang, C. Y.; Gorkin, R.; Beirne, S.; Shu, K. W.; Wallace, G. G. Three dimensional (3D) printed electrodes for interdigitated supercapacitors. Electrochem. Commun. 2014, 41, 20–23.CrossRefGoogle Scholar
  118. [118]
    Hu, J. T.; Jiang, Y.; Cui, S. H.; Duan, Y. D.; Liu, T. C.; Guo, H.; Lin, L. P.; Lin, Y.; Zheng, J. X.; Amine, K. et al. 3D-printed cathodes of LiMn1–xFexPO4 nanoCrystals achieve both ultrahigh rate and high capacity for advanced lithium -ion battery. Adv. Energy Mater. 2016, 6, 1600856.CrossRefGoogle Scholar
  119. [119]
    Gaikwad, A. M.; Steingart, D. A.; Nga Ng, T.; Schwartz, D. E.; Whiting, G. L. A flexible high potential printed battery for powering printed electronics. Appl. Phys. Lett. 2013, 102, 233302.CrossRefGoogle Scholar
  120. [120]
    Braam, K.; Subramanian, V. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator. Adv. Mater. 2015, 27, 689–694.CrossRefGoogle Scholar
  121. [121]
    Gaikwad, A. M.; Whiting, G. L.; Steingart, D. A.; Arias, A. C. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 2011, 23, 3251–3255.CrossRefGoogle Scholar
  122. [122]
    Kumar, R.; Shin, J.; Yin, L.; You, J. M.; Meng, Y. S.; Wang, J. All-printed, stretchable Zn-Ag2O rechargeable battery via hyperelastic binder for self-powering wearable electronics. Adv. Energy Mater. 2017, 7, 1602096.CrossRefGoogle Scholar
  123. [123]
    Fu, K.; Wang, Y. B.; Yan, C. Y.; Yao, Y. G.; Chen, Y.; Dai, J. Q.; Lacey, S.; Wang, Y. B.; Wan, J. Y.; Li, T. et al. Graphene oxide - based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 2016, 28, 2587–2594.CrossRefGoogle Scholar
  124. [124]
    Milroy, C. A.; Jang, S.; Fujimori, T.; Dodabalapur, A.; Manthiram, A. Inkjet-printed lithium–sulfur microcathodes for all-printed, integrated nanomanufacturing. Small 2017, 13, 1603786.CrossRefGoogle Scholar
  125. [125]
    Kim, S. H.; Choi, K. H.; Cho, S. J.; Choi, S.; Park, S.; Lee, S. Y. Printable solid-state lithium-ion batteries: A new route toward shape-conformable power sources with aesthetic versatility for flexible electronics. Nano Lett. 2015, 15, 5168–5177.CrossRefGoogle Scholar
  126. [126]
    Kim, S. H.; Choi, K. H.; Cho, S. J.; Yoo, J.; Lee, S. S.; Lee, S. Y. Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Enviro. Sci. 2018, 11, 321–330.CrossRefGoogle Scholar
  127. [127]
    Gao, Z.; Bumgardner, C.; Song, N.; Zhang, Y.; Li, J.; Li, X. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat. Commun. 2016, 7, 11586.CrossRefGoogle Scholar
  128. [128]
    Mahmoudzadeh, M. A.; Usgaocar, A. R.; Giorgio, J.; Officer, D. L.; Wallace, G. G.; Madden, J. D. A high energy density solar rechargeable redox battery. J. Mater. Chem. A 2016, 4, 3446–3452.CrossRefGoogle Scholar
  129. [129]
    Guo, W. X.; Xue, X. Y.; Wang, S. H.; Lin, C. J.; Wang, Z. L. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 2012, 12, 2520–2523.CrossRefGoogle Scholar
  130. [130]
    Chen, X. L.; Sun, H.; Yang, Z. B.; Guan, G. Z.; Zhang, Z. T.; Qiu, L. B.; Peng, H. S. A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. J. Mater. Chem. A 2014, 2, 1897–1902.CrossRefGoogle Scholar
  131. [131]
    Xu, X. B.; Li, S. H.; Zhang, H.; Shen, Y.; Zakeeruddin, S. M.; Grätzel, M.; Cheng, Y. B.; Wang, M. K. A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano 2015, 9, 1782–1787.CrossRefGoogle Scholar
  132. [132]
    Cohn, A. P.; Erwin, W. R.; Share, K.; Oakes, L.; Westover, A. S.; Carter, R. E.; Bardhan, R.; Pint, C. L. All silicon electrode photocapacitor for integrated energy storage and conversion. Nano Lett. 2015, 15, 2727–2731.CrossRefGoogle Scholar
  133. [133]
    Bae, J.; Park, Y. J.; Lee, M.; Cha, S. N.; Choi, Y. J.; Lee, C. S.; Kim, J. M.; Wang, Z. L. Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv. Mater. 2011, 23, 3446–3449.CrossRefGoogle Scholar
  134. [134]
    Schmidt, D.; Hager, M. D.; Schubert, U. S. Photorechargeable electric energy storage systems. Adv. Energy Mater. 2016, 6, 1500369.CrossRefGoogle Scholar
  135. [135]
    Xu, J. T.; Chen, Y. H.; Dai, L. M. Efficiently photocharging lithium-ion battery by perovskite solar cell. Nat. Commun. 2015, 6, 8103.CrossRefGoogle Scholar
  136. [136]
    Zhou, F. C.; Ren, Z. W.; Zhao, Y. D.; Shen, X. P.; Wang, A. W.; Li, Y. Y.; Surya, C.; Chai, Y. Perovskite photovoltachromic supercapacitor with all-transparent electrodes. ACS Nano 2016, 10, 5900–5908.CrossRefGoogle Scholar
  137. [137]
    Shi, C. L.; Dong, H.; Zhu, R.; Li, H.; Sun, Y. C.; Xu, D. S.; Zhao, Q.; Yu, D. P. An “all-in-one” mesh-typed integrated energy unit for both photoelectric conversion and energy storage in uniform electrochemical system. Nano Energy 2015, 13, 670–678.CrossRefGoogle Scholar
  138. [138]
    Yang, Z. B.; Li, L.; Luo, Y. F.; He, R. X.; Qiu, L. B.; Lin, H. J.; Peng, H. S. An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. J. Mater. Chem. A 2013, 1, 954–958.CrossRefGoogle Scholar
  139. [139]
    Chen, T.; Qiu, L. B.; Yang, Z. B.; Cai, Z. B.; Ren, J.; Li, H. P.; Lin, H. J.; Sun, X. M.; Peng, H. S. An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem., Int. Ed. 2012, 51, 11977–11980.CrossRefGoogle Scholar
  140. [140]
    Zhang, Z. T.; Chen, X. L.; Chen, P. N.; Guan, G. Z.; Qiu, L. B.; Lin, H. J.; Yang, Z. B.; Bai, W. Y.; Luo, Y. F.; Peng, H. S. Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 2014, 26, 466–470.CrossRefGoogle Scholar
  141. [141]
    Fu, Y. P.; Wu, H. W.; Ye, S. Y.; Cai, X.; Yu, X.; Hou, S. C.; Kafafy, H.; Zou, D. C. Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 2013, 6, 805–812.CrossRefGoogle Scholar
  142. [142]
    Xia, X. H.; Ku, Z. L.; Zhou, D.; Zhong, Y.; Zhang, Y. Q.; Wang, Y. D.; Huang, M. J.; Tu, J. P.; Fan, H. J. Perovskite solar cell powered electrochromic batteries for smart windows. Mater. Horiz. 2016, 3, 588–595.CrossRefGoogle Scholar
  143. [143]
    Cai, G. F.; Darmawan, P.; Cui, M. Q.; Chen, J. W.; Wang, X.; Eh, A. L. S.; Magdassi, S.; Lee, P. S. Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes. Nanoscale 2016, 8, 348–357.CrossRefGoogle Scholar
  144. [144]
    Berggren, M.; Nilsson, D.; Robinson, N. D. Organic materials for printed electronics. Nat. Mater. 2007, 6, 3–5.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyHong KongChina
  2. 2.Department of Materials ScienceFudan UniversityShanghaiChina

Personalised recommendations