MoP nanoparticles with a P-rich outermost atomic layer embedded in N-doped porous carbon nanofibers: Self-supported electrodes for efficient hydrogen generation

Research Article
  • 34 Downloads

Abstract

Despite being pursued for a long time, hydrogen production via water splitting is still a huge challenge mainly due to a lack of durable and efficient catalysts. Molybdenum phosphide (MoP) is theoretically capable of efficient hydrogen evolution reaction (HER) catalysis, however, there is still room for further improvement in its performance. Herein, we propose a design for MoP with a P-rich outermost atomic layer for enhancing HER via complementary theoretical and experimental validation. The correlation of computational results suggests that the P-terminated surface of MoP plays a crucial role in determining its high-efficiency catalytic properties. We fabricated a P-rich outermost atomic layer of MoP nanoparticles by using N-doped porous carbon (MoP@NPCNFs) to capture more P on the surface of MoP and limit the growth of nanoparticles. Further, the as-prepared material can be directly employed as a self-supported electrocatalyst, and it exhibits remarkable electrocatalytic activity for HER in acidic media; it also reveals excellent long-term durability for up to 5,000 cycles with negligible loss of catalytic activity.

Keywords

P-rich outermost atomic layer molybdenum phosphide density function theory self-supported electrocatalyst hydrogen evolution reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (No. 21773188), Fundamental Research Funds for the Central Universities (Nos. XDJK2017D003 and XDJK2017B055), Program for Excellent Talents in Chongqing (No. 102060-20600218), and Program for Innovation Team Building at Institutions of Higher Education in Chongqing (No. CXTDX201601011) and Chongqing Key Laboratory for Advanced Materials and Technologies.

Supplementary material

12274_2018_2057_MOESM1_ESM.pdf (3.7 mb)
Supplementary material, approximately 3769 KB.

References

  1. [1]
    Fan, J. C.; Qi, K.; Zhang, L.; Zhang, H. Y.; Yu, S. S.; Cui, X. Q. Engineering Pt/Pd interfacial electronic structures for highly efficient hydrogen evolution and alcohol oxidation. ACS Appl. Mater. Interfaces 2017, 9, 18008–18014.CrossRefGoogle Scholar
  2. [2]
    Liao, H. B.; Wei, C.; Wang, J. X.; Fisher, A.; Sritharan, T.; Feng, Z. X.; Xu, Z. J. A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media. Adv. Energy Mater. 2017, 7, 1701129.CrossRefGoogle Scholar
  3. [3]
    Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.CrossRefGoogle Scholar
  4. [4]
    Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016, 16, 1097–1103.CrossRefGoogle Scholar
  5. [5]
    Zhou, W. J.; Jia, J.; Lu, J.; Yang, L. J.; Hou, D. M.; Li, G. Q.; Chen, S. W. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 2016, 28, 29–43.CrossRefGoogle Scholar
  6. [6]
    Tian, L. H.; Yan, X. D.; Chen, X. B. Electrochemical activity of iron phosphide nanoparticles in hydrogen evolution reaction. ACS Catal. 2016, 6, 5441–5448.CrossRefGoogle Scholar
  7. [7]
    Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427–5430.CrossRefGoogle Scholar
  8. [8]
    Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.CrossRefGoogle Scholar
  9. [9]
    Yu, J. Y.; Zhou, W. J.; Xiong, T. L.; Wang, A. L.; Chen, S. W.; Chu, B. L. Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Res. 2017, 10, 2599–2609.CrossRefGoogle Scholar
  10. [10]
    Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 387–392.CrossRefGoogle Scholar
  11. [11]
    Cheng, L.; Huang, W. J.; Gong, Q. F.; Liu, C. H.; Liu, Z.; Li, Y. G.; Dai, H. J. Ultrathin WS2 nanoflakes as a highperformance electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7860–7863.CrossRefGoogle Scholar
  12. [12]
    Callejas, J. F.; Read, C. G.; Popczun, E. J.; McEnaney, J. M.; Schaak, R. E. Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem. Mater. 2015, 27, 3769–3774.CrossRefGoogle Scholar
  13. [13]
    Li, Y. J.; Zhang, H. C.; Jiang, M.; Kuang, Y.; Sun, X. M.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251–2259.CrossRefGoogle Scholar
  14. [14]
    Wang, M. Q.; Ye, C.; Liu, H.; Xu, M. W.; Bao, S. J. Nanosized metal phosphides embedded in nitrogen-doped porous carbon nanofibers for enhanced hydrogen evolution at all pH values. Angew. Chem., Int. Ed. 2018, 57, 1963–1967.CrossRefGoogle Scholar
  15. [15]
    Wang, M. Q.; Ye, C.; Bao, S. J.; Chen, Z. Y.; Liu, H.; Xu, M. W. Ternary NixCo3–xS4 with fine hollow nanostructure as robust electrocatalyst for hydrogen evolution. ChemCatChem 2017, 9, 4169–4174.CrossRefGoogle Scholar
  16. [16]
    Yang, J.; Zhang, F. J.; Wang, X.; He, D. S.; Wu, G.; Yang, Q. H.; Hong, X.; Wu, Y.; Li, Y. D. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12854–12858.CrossRefGoogle Scholar
  17. [17]
    Jia, J.; Zhou, W. J.; Li, G. X.; Yang, L. J.; Wei, Z. Q.; Cao, L. D.; Wu, Y. S.; Zhou, K.; Chen, S. W. Regulated synthesis of Mo sheets and their derivative MoX sheets (X: P, S, or C) as efficient electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 8041–8046.CrossRefGoogle Scholar
  18. [18]
    McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Biacchi, A. J.; Lewis, N. S.; Schaak, R. E. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem. Mater. 2014, 26, 4826–4831.CrossRefGoogle Scholar
  19. [19]
    Xiao, P.; Sk, M. A.; Thia, L.; Ge, X. M.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624–2629.CrossRefGoogle Scholar
  20. [20]
    Li, F.; Zhao, X. L.; Mahmood, J.; Okyay, M. S.; Jung, S. M.; Ahmad, I.; Kim, S. J.; Han, G. F.; Park, N.; Baek, J. B. Macroporous inverse opal-like MoxC with incorporated Mo vacancies for significantly enhanced hydrogen evolution. ACS Nano 2017, 11, 7527–7533.CrossRefGoogle Scholar
  21. [21]
    Duan, H. H.; Li, D. G.; Tang, Y.; He, Y.; Ji, S. F.; Wang, R. Y.; Lv, H. F.; Lopes, P. P.; Paulikas, A. P.; Li, H. Y. et al. High performance Rh2P electrocatalyst for efficient water splitting. J. Am. Chem. Soc. 2017, 139, 5494–5502.CrossRefGoogle Scholar
  22. [22]
    Xing, Z. C.; Liu, Q.; Asiri, A. M.; Sun, X. P. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702–5707.CrossRefGoogle Scholar
  23. [23]
    Liu, Y. P.; Yu, G. T.; Li, G. D.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew. Chem., Int. Ed. 2015, 54, 10752–10757.CrossRefGoogle Scholar
  24. [24]
    Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.CrossRefGoogle Scholar
  25. [25]
    Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.CrossRefGoogle Scholar
  26. [26]
    Phillips, D. C.; Sawhill, S. J.; Self, R.; Bussell, M. E. Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts. J. Catal. 2002, 207, 266–273.CrossRefGoogle Scholar
  27. [27]
    Pan, Y.; Lin, Y.; Chen, Y. J.; Liu, Y. Q.; Liu, C. G. Cobalt phosphide-based electrocatalysts: Synthesis and phase catalytic activity comparison for hydrogen evolution. J. Mater. Chem. A 2016, 4, 4745–4754.CrossRefGoogle Scholar
  28. [28]
    Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.CrossRefGoogle Scholar
  29. [29]
    Pu, Z. H.; Liu, Q.; Asiri, A. M.; Sun, X. P. Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values. ACS Appl. Mater. Interfaces 2014, 6, 21874–21879.CrossRefGoogle Scholar
  30. [30]
    Wang, X. G.; Kolen’Ko, Y. V.; Bao, X. Q.; Kovnir, K.; Liu, L. F. One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew. Chem., Int. Ed. 2015, 54, 8188–8192.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Clean Energy & Advanced Materials, Faculty of Materials and EnergySouthwest UniversityChongqingChina
  2. 2.Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina

Personalised recommendations