Nano Research

, Volume 11, Issue 9, pp 4686–4696 | Cite as

Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation

  • Zhenyuan Liu
  • Gengtao Fu
  • Jiahui Li
  • Zhenqi Liu
  • Lin Xu
  • Dongmei Sun
  • Yawen Tang
Research Article


A novel carbon-supported cyanogel (C@cyanogel)-derived strategy is used to synthesize an intermetallic Pd3Fe/C compound of the desired ordered Pd3Fe phase with a small particle size. The novelty of this work lies in using carbon-supported K2PdIICl4/K4FeII(CN)6 cyanogel as a reaction precursor, generated through the substitution of two chloride ligands by the nitrogen ends of the cyanide ligands on the metal center. The inherent nature of cyanogels can effectively suppress the movement of Pd0 and Fe0 nuclei in the crystal, benefiting the formation of the intermetallic, which is otherwise challenging via traditional synthesis techniques. The ordered Pd3Fe/C catalyst exhibits excellent catalytic activity and good cycle stability for the formic acid oxidation (FAO) reaction relative to the properties of disordered Pd3Fe/C and commercial Pd/C catalysts, demonstrating that the ordered Pd3Fe/C is a promising replacement for commercial Pd-based catalysts. The outstanding performance can be ascribed to the full isolation of active sites in the ordered Pd3Fe structure and the modified electronic structure of the active components. This work provides an effective and novel route to obtain Pd-based intermetallic compounds with potential applications in a wide range of electrocatalysis.


carbon@cyanogel Pd3Fe/C ordered intermetallic electrocatalyst formic acid oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21503111, 21576139, and 21376122), Natural Science Foundation of Jiangsu Province (No. BK20171473), Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 16KJB150020) and Key Laboratory of Renewable Energy, Chinese Academy of Sciences (No. Y607k51001). The authors are also grateful for the supports from National and Local Joint Engineering Research Center of Biomedical Functional Materials and a project sponsored by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Supplementary material

12274_2018_2051_MOESM1_ESM.pdf (1002 kb)
Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation


  1. [1]
    Liu, M. M.; Zhang, R. Z.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117–5160.CrossRefGoogle Scholar
  2. [2]
    Peng, Z. M.; Yang, H. PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res. 2009, 2, 406–415.CrossRefGoogle Scholar
  3. [3]
    Klinkova, A.; De Luna, P.; Sargent, E. H.; Kumacheva, E.; Cherepanov, P. V. Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. J. Mater. Chem. A 2017, 5, 11582–11585.CrossRefGoogle Scholar
  4. [4]
    Chang, J. F.; Feng, L. G.; Liu, C. P.; Xing, W.; Hu, X. L. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells. Angew. Chem., Int. Ed. 2014, 53, 122–126.CrossRefGoogle Scholar
  5. [5]
    Xu, H.; Ding, L. X.; Feng, J. X.; Li, G. R. Pt/Ni(OH)2-NiOOH/Pd multi-walled hollow nanorod arrays as superior electrocatalysts for formic acid electrooxidation. Chem. Sci. 2015, 6, 6991–6998.CrossRefGoogle Scholar
  6. [6]
    Bin, D.; Yang, B. B.; Ren, F. F.; Zhang, K.; Yang, P.; Du, Y. K. Facile synthesis of PdNi nanowire networks supported on reduced graphene oxide with enhanced catalytic performance for formic acid oxidation. J. Mater. Chem. A 2015, 3, 14001–14006.CrossRefGoogle Scholar
  7. [7]
    Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 499–510.CrossRefGoogle Scholar
  8. [8]
    Luan, C. L.; Zhou, Q. X.; Wang, Y.; Xiao, Y.; Dai, X. P.; Huang, X. L.; Zhang, X. A general strategy assisted with dual reductants and dual protecting agents for preparing Pt-based alloys with high-index facets and excellent electrocatalytic performance. Small 2017, 13, 1702617.CrossRefGoogle Scholar
  9. [9]
    Liu, D.; Xie, M. L.; Wang, C. M.; Liao, L. W.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. J. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590–1599.CrossRefGoogle Scholar
  10. [10]
    Ho, S. F.; Mendoza-Garcia, A.; Guo, S. J.; He, K.; Su, D.; Liu, S.; Metin, Ö.; Sun, S. H. A facile route to monodisperse MPd (M = Co or Cu) alloy nanoparticles and their catalysis for electrooxidation of formic acid. Nanoscale 2014, 6, 6970–6973.CrossRefGoogle Scholar
  11. [11]
    Yu, X. W.; Pickup, P. G. Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 2008, 182, 124–132.CrossRefGoogle Scholar
  12. [12]
    Mahmood, A.; Saleem, F.; Lin, H. F.; Ni, B.; Wang, X. Crystallinity-induced shape evolution of Pt-Ag nanosheets from branched nanocrystals. Chem. Commun. 2016, 52, 10547–10550.CrossRefGoogle Scholar
  13. [13]
    Qin, Y. C.; Zhang, X.; Dai, X. P.; Sun, H.; Yang, Y.; Li, X. S.; Shi, Q. X.; Gao, D. W.; Wang, H.; Yu, N. F. et al. Graphene oxide-assisted synthesis of Pt-Co alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Small 2016, 12, 524–533.CrossRefGoogle Scholar
  14. [14]
    Wang, X. X.; Yang, J. D.; Yin, H. J.; Song, R.; Tang, Z. Y. "Raisin bun"-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Adv. Mater. 2013, 25, 2728–2732.CrossRefGoogle Scholar
  15. [15]
    Sun, H. Y.; Guo, X.; Ye, W.; Kou, S. F.; Yang, J. Charge transfer accelerates galvanic replacement for PtAgAu nanotubes with enhanced catalytic activity. Nano Res. 2016, 9, 1173–1181.CrossRefGoogle Scholar
  16. [16]
    Ha, S.; Larsen, R.; Masel, R. I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells. J. Power Sources 2005, 144, 28–34.CrossRefGoogle Scholar
  17. [17]
    Mazumder, V.; Chi, M. F.; Mankin, M. N.; Liu, Y.; Metin, Ö.; Sun, D. H.; More, K. L.; Sun, S. H. A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation. Nano Lett. 2012, 12, 1102–1106.CrossRefGoogle Scholar
  18. [18]
    Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.CrossRefGoogle Scholar
  19. [19]
    Iyyamperumal, R.; Zhang, L.; Henkelman, G.; Crooks, R. M. Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles. J. Am. Chem. Soc. 2013, 135, 5521–5524.CrossRefGoogle Scholar
  20. [20]
    Jiang, K.; Zhang, H. X.; Zou, S. Z.; Cai, W. B. Electrocatalysis of formic acid on palladium and platinum surfaces: From fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 2014, 16, 20360–20376.CrossRefGoogle Scholar
  21. [21]
    Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824–832.CrossRefGoogle Scholar
  22. [22]
    Yan, X. X.; Hu, X. J.; Fu, G. T.; Xu, L.; Lee, J. M.; Tang, Y. W. Facile synthesis of porous Pd3Pt half-shells with rich "active sites" as efficient catalysts for formic acid oxidation. Small, in press, DOI: 10.1002/smll.201703940.Google Scholar
  23. [23]
    Xu, H.; Zhang, K.; Yan, B.; Wang, J.; Wang, C. Q.; Li, S. M.; Gu, Z. L.; Du, Y. K.; Yang, P. Ultra-uniform PdBi nanodots with high activity towards formic acid oxidation. J. Power Sources 2017, 356, 27–35.CrossRefGoogle Scholar
  24. [24]
    Matin, M. A.; Jang, J. H.; Kwon, Y. U. PdM nanoparticles (M = Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions. J. Power Sources 2014, 262, 356–363.CrossRefGoogle Scholar
  25. [25]
    Du, C. Y.; Chen, M.; Wang, W. G.; Yin, G. P.; Shi, P. F. Electrodeposited PdNi2 alloy with novelly enhanced catalytic activity for electrooxidation of formic acid. Electrochem. Commun. 2010, 12, 843–846.CrossRefGoogle Scholar
  26. [26]
    Lu, Q. Q.; Wang, H. J.; Eid, K.; Alothman, Z. A.; Malgras, V.; Yamauchi, Y.; Wang, L. Synthesis of hollow platinum-palladium nanospheres with a dendritic shell as efficient electrocatalysts for methanol oxidation. Chem. Asian J. 2016, 11, 1939–1944.CrossRefGoogle Scholar
  27. [27]
    Chen, D.; Sun, P. C.; Liu, H.; Yang, J. Bimetallic Cu-Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. J. Mater. Chem. A 2017, 5, 4421–4429.CrossRefGoogle Scholar
  28. [28]
    Saleem, F.; Ni, B.; Yong, Y.; Gu, L.; Wang, X. Ultra-small tetrametallic Pt-Pd-Rh-Ag nanoframes with tunable behavior for direct formic acid/methanol oxidation. Small 2016, 12, 5261–5268.CrossRefGoogle Scholar
  29. [29]
    Mao, J. J.; Liu, Y. X.; Chen, Z.; Wang, D. S.; Li, Y. D. Bimetallic Pd-Cu nanocrystals and their tunable catalytic properties. Chem. Commun. 2014, 50, 4588–4591.CrossRefGoogle Scholar
  30. [30]
    McMillan, R. A.; Howard, J.; Zaluzec, N. J.; Kagawa, H. K.; Mogul, R.; Li, Y. F.; Paavola, C. D.; Trent, J. D. A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. J. Am. Chem. Soc. 2005, 127, 2800–2801.CrossRefGoogle Scholar
  31. [31]
    Chai, J.; Li, F. H.; Hu, Y. W.; Zhang, Q. X.; Han, D. X.; Niu, L. Hollow flower-like aupd alloy nanoparticles: One step synthesis, self-assembly on ionic liquid-functionalized graphene, and electrooxidation of formic acid. J. Mater. Chem. 2011, 21, 17922–17929.CrossRefGoogle Scholar
  32. [32]
    Tominaka, S.; Momma, T.; Osaka, T. Electrodeposited Pd-Co catalyst for direct methanol fuel cell electrodes: Preparation and characterization. Electrochim. Acta 2008, 53, 4679–4686.CrossRefGoogle Scholar
  33. [33]
    Zhang, Z. H.; Zhang, C.; Sun, J. Z.; Kou, T. Y.; Zhao, C. C. Ultrafine nanoporous Cu-Pd alloys with superior catalytic activities towards electro-oxidation of methanol and ethanol in alkaline media. RSC Adv. 2012, 2, 11820–11828.CrossRefGoogle Scholar
  34. [34]
    Rong, H. P.; Mao, J. J.; Xin, P. Y.; He, D. S.; Chen, Y. J.; Wang, D. S.; Niu, Z. Q.; Wu, Y.; Li, Y. D. Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: Effective and stable catalysts. Adv. Mater. 2016, 28, 2540–2546.CrossRefGoogle Scholar
  35. [35]
    Liu, Y. X.; Liu, X. W.; Feng, Q. C.; He, D. S.; Zhang, L. B.; Lian, C.; Shen, R.; Zhao, G. F.; Ji, Y. J.; Wang, D. S. et al. Intermetallic NixMy (M = Ga and Sn) nanocrystals: A non-precious metal catalyst for semi-hydrogenation of alkynes. Adv. Mater. 2016, 28, 4747–4754.CrossRefGoogle Scholar
  36. [36]
    Cui, Z. M.; Chen, H.; Zhao, M. T.; DiSalvo, F. J. High-performance Pd3Pb intermetallic catalyst for electrochemical oxygen reduction. Nano Lett. 2016, 16, 2560–2566.CrossRefGoogle Scholar
  37. [37]
    Shi, Q. R.; Zhu, C. Z.; Bi, C. X.; Xia, H. B.; Engelhard, M. H.; Du, D.; Lin, Y. H. Intermetallic Pd3Pb nanowire networks boost ethanol oxidation and oxygen reduction reactions with significantly improved methanol tolerance. J. Mater. Chem. A 2017, 5, 23952–23959.CrossRefGoogle Scholar
  38. [38]
    Du, X. X.; He, Y.; Wang, X. X.; Wang, J. N. Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy Environ. Sci. 2016, 9, 2623–2632.CrossRefGoogle Scholar
  39. [39]
    Gunji, T.; Noh, S. H.; Tanabe, T.; Han, B.; Nien, C. Y.; Ohsaka, T.; Matsumoto, F. Enhanced electrocatalytic activity of carbon-supported ordered intermetallic palladium-lead (Pd3Pb) nanoparticles toward electrooxidation of formic acid. Chem. Mater. 2017, 29, 2906–2913.CrossRefGoogle Scholar
  40. [40]
    Li, X.; An, L.; Wang, X. Y.; Li, F.; Zou, R. Q.; Xia, D. G. Supported sub-5nm Pt-Fe intermetallic compounds for electrocatalytic application. J. Mater. Chem. 2012, 22, 6047–6052.CrossRefGoogle Scholar
  41. [41]
    Cui, Z. M.; Li, L. J.; Manthiram, A.; Goodenough, J. B. Enhanced cycling stability of hybrid Li-air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst. J. Am. Chem. Soc. 2015, 137, 7278–7281.CrossRefGoogle Scholar
  42. [42]
    Kuttiyiel, K. A.; Sasaki, K.; Su, D.; Wu, L. J.; Zhu, Y. M.; Adzic, R. R. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nat. Commun. 2014, 5, 5185.CrossRefGoogle Scholar
  43. [43]
    Zhang, G. J.; Zhang, L.; Shen, L. P.; Chen, Y.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic properties of palladium network nanostructures. ChemPlusChem 2012, 77, 936–940.CrossRefGoogle Scholar
  44. [44]
    Liu, H. M.; Li, J. H.; Wang, L. J.; Tang, Y. W.; Xia, B. Y.; Chen, Y. Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation. Nano Res. 2017, 10, 3324–3332.CrossRefGoogle Scholar
  45. [45]
    Fu, G. T.; Liu, Z. Y.; Zhang, J. F.; Wu, J. Y.; Xu, L.; Sun, D. M.; Zhang, J. B.; Tang, Y. W.; Chen, P. Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst. Nano Res. 2016, 9, 2110–2122.CrossRefGoogle Scholar
  46. [46]
    Fu, G. T.; Liu, H. M.; You, N. K.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Dendritic platinum-copper bimetallic nanoassemblies with tunable composition and structure: Arginine- driven self-assembly and enhanced electrocatalytic activity. Nano Res. 2016, 9, 755–765.CrossRefGoogle Scholar
  47. [47]
    Hammer, B.; Morikawa, Y.; Nørskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 1996, 76, 2141–2144.CrossRefGoogle Scholar
  48. [48]
    Wang, Y. C.; Chen, J. W.; Zhou, F. L.; Zhang, J.; Wei, X. Y.; Luo, R.; Wang, G.; Wang, R. L. Dealloyed platinum-copper with isolated Pt atom surface: Facile synthesis and promoted dehydrogenation pathway of formic acid electro-oxidation. J. Electroanal. Chem. 2017, 799, 78–83.CrossRefGoogle Scholar
  49. [49]
    Kristian, N.; Yan, Y. S.; Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun. 2008, 353–355.Google Scholar
  50. [50]
    Cui, Z. M.; Chen, H.; Zhou, W. D.; Zhao, M. T.; DiSalvo, F. J. Structurally ordered Pt3Cr as oxygen reduction electrocatalyst: Ordering control and origin of enhanced stability. Chem. Mater. 2015, 27, 7538–7545.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjingChina
  2. 2.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations