Nano Research

, Volume 11, Issue 6, pp 3509–3518 | Cite as

Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity

  • Linzhou Zhuang
  • Yi Jia
  • Tianwei He
  • Aijun Du
  • Xuecheng Yan
  • Lei Ge
  • Zhonghua ZhuEmail author
  • Xiangdong YaoEmail author
Research Article


The oxygen evolution reaction (OER) represents the rate-determining step of electrocatalytic water splitting into hydrogen and oxygen. Creating oxygen vacancies and adjusting their density has proven to be an effective strategy to design high-performance OER catalysts. Herein, a hydrogenation method is applied to treat a two-dimensional (2D) iron-cobalt oxide (Fe1Co1Ox-origin), with the purpose of tuning its oxygen vacancy density. Notably, compared with Fe1Co1Ox-origin, the iron-cobalt oxide hydrogenated at 200 °C and 2.0 MPa optimized conditions exhibits a markedly improved OER activity in 1.0 M KOH (with an overpotential η of 225 mV at a current density of 10 mA·cm–2) and a rapid reaction kinetics (with a Tafel slope of 36.0 mV·dec–1). Moreover, the OER mass activity of the hydrogenated oxide is 1.9 times that of Fe1Co1Ox-origin at an overpotential of 350 mV. The experimental results, combined with density functional theory (DFT) calculations, reveal that the optimal control of oxygen vacancies in 2D Fe1Co1Ox via hydrogenation can improve the electronic conductivity and promote OH adsorption onto nearby low-coordinated Co3+ sites, resulting in a significantly enhanced OER activity.


hydrogenation tuning oxygen vacancy oxygen evolution reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The financial support from ARC is highly appreciated, through ARC Discovery Project (No. DP170103317), ARC Future Fellowship (No. FT120100720) and ARC Discovery Early Career Researcher Award (No. ARC DE180101030). L. Z. Z. acknowledges the support from International Postgraduate Research Scholarship (IPRS) and UQ Centennial Scholarship (UQCent). The authors acknowledge the scientific and technical assistance of the Australian Microscopy and Microanalysis Research Facility at the UQ Centre.

Supplementary material

12274_2018_2050_MOESM1_ESM.pdf (2 mb)
Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.CrossRefGoogle Scholar
  3. [3]
    Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.CrossRefGoogle Scholar
  4. [4]
    Li, G. Q.; Zhang, D.; Qiao, Q.; Yu, Y. F.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 16632–16638.CrossRefGoogle Scholar
  5. [5]
    Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.CrossRefGoogle Scholar
  6. [6]
    Gao, M. R.; Cao, X.; Gao, Q.; Xu, Y. F.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 2014, 8, 3970–3978.CrossRefGoogle Scholar
  7. [7]
    Stern, L.-A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347–2351.CrossRefGoogle Scholar
  8. [8]
    Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung C.-H.; Zhang, T. R. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585.CrossRefGoogle Scholar
  9. [9]
    Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.CrossRefGoogle Scholar
  10. [10]
    Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.CrossRefGoogle Scholar
  11. [11]
    Liu, X. J.; Chang, Z.; Luo, L.; Xu, T. H.; Lei, X. D.; Liu, J. F.; Sun, X. M. Hierarchical ZnxCo3–xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 2014, 26, 1889–1895.CrossRefGoogle Scholar
  12. [12]
    Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.CrossRefGoogle Scholar
  13. [13]
    Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.CrossRefGoogle Scholar
  14. [14]
    Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygenevolving catalysts. Science 2016, 352, 333–337.CrossRefGoogle Scholar
  15. [15]
    Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.CrossRefGoogle Scholar
  16. [16]
    Jia, Y. Zhang, L. Z.; Gao, G. P.; Chen, H.; Wang, B.; Zhou, J. Z.; Soo, M. T.; Hong, M.; Yan, X. C.; Qian, G. R. et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.CrossRefGoogle Scholar
  17. [17]
    Guo, Y. Q.; Xu, K.; Wu, C. Z.; Zhao, J. Y.; Xie, Y. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44, 637–646.CrossRefGoogle Scholar
  18. [18]
    Huang, Z. F.; Wang, J.; Peng, Y. C.; Jung, C. Y.; Fisher, A.; Wang, X. Design of efficient bifunctional oxygen reduction/ evolution electrocatalyst: Recent advances and perspectives. Adv. Energy Mater. 2017, 7, 1700544.CrossRefGoogle Scholar
  19. [19]
    Li, Y. B.; Zhang, H. M.; Wang, Y.; Liu, P. R.; Yang, H. G.; Yao, X. D.; Wang, D.; Tang, Z. Y.; Zhao, H. J. A selfsponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts. Energy Environ. Sci. 2014, 7, 3720–3726.CrossRefGoogle Scholar
  20. [20]
    Zheng, Y.; Jiao, Y.; Li, L. H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. Toward design of synergistically active carbonbased catalysts for electrocatalytic hydrogen evolution. ACS Nano 2014, 8, 5290–5296.CrossRefGoogle Scholar
  21. [21]
    Liu, G. L.; Robertson, A. W.; Li, M. M.-J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y.-C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816.CrossRefGoogle Scholar
  22. [22]
    Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.CrossRefGoogle Scholar
  23. [23]
    Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9538.CrossRefGoogle Scholar
  24. [24]
    Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016, 16, 1097–1103.CrossRefGoogle Scholar
  25. [25]
    Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.CrossRefGoogle Scholar
  26. [26]
    Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.CrossRefGoogle Scholar
  27. [27]
    Li, G. W.; Blake, G. R.; Palstra, T. T. M. Vacancies in functional materials for clean energy storage and harvesting: The perfect imperfection. Chem. Soc. Rev. 2017, 46, 1693–1706.CrossRefGoogle Scholar
  28. [28]
    Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033.CrossRefGoogle Scholar
  29. [29]
    Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.CrossRefGoogle Scholar
  30. [30]
    Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.CrossRefGoogle Scholar
  31. [31]
    Xiao, Z. H.; Wang, Y.; Huang, Y.-C.; Wei, Z. X.; Dong, C.-L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultraefficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.CrossRefGoogle Scholar
  32. [32]
    Hadt, R. G.; Hayes, D.; Brodsky, C. N.; Ullman, A. M.; Casa, D. M.; Upton, M. H.; Nocera, D. G.; Chen, L. X. X-ray spectroscopic characterization of Co(IV) and metal-metal interactions in Co4O4: Electronic structure contributions to the formation of high-valent states relevant to the oxygen evolution reaction. J. Am. Chem. Soc. 2016, 138, 11017–11030.CrossRefGoogle Scholar
  33. [33]
    Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.CrossRefGoogle Scholar
  34. [34]
    Wang, J.; Ge, X. M.; Liu, Z. L.; Thia, L.; Yan, Y.; Xiao, W.; Wang, X. Heterogeneous electrocatalyst with molecular cobalt ions serving as the center of active sites. J. Am. Chem. Soc. 2017, 139, 1878–1884.CrossRefGoogle Scholar
  35. [35]
    Chen, J. M.; Chin, Y. Y.; Valldor, M.; Hu, Z. W.; Lee, J. M.; Haw, S. C.; Hiraoka, N.; Ishii, H.; Pao, C. W.; Tsuei, K. D. et al. A complete high-to-low spin state transition of trivalent cobalt ion in octahedral symmetry in SrCo0.5Ru0.5O3–δ. J. Am. Chem. Soc. 2014, 136, 1514–1519.CrossRefGoogle Scholar
  36. [36]
    Mashino, I.; Ohtani, E.; Hirao, N.; Mitsui, T.; Masuda, R.; Seto, M.; Sakai, T.; Takahashi, S.; Nakano, S. The spin state of iron in Fe3+-bearing Mg-perovskite and its crystal chemistry at high pressure. Am. Mineral. 2014, 99, 1555–1561.CrossRefGoogle Scholar
  37. [37]
    Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z. A.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.CrossRefGoogle Scholar
  38. [38]
    Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 14433–14437.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Linzhou Zhuang
    • 1
  • Yi Jia
    • 2
  • Tianwei He
    • 3
  • Aijun Du
    • 3
  • Xuecheng Yan
    • 2
  • Lei Ge
    • 1
  • Zhonghua Zhu
    • 1
    Email author
  • Xiangdong Yao
    • 2
    Email author
  1. 1.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.School of Environment and Science and Queensland Micro- and Nanotechnology CentreGriffith University, Nathan CampusBrisbaneAustralia
  3. 3.School of Chemistry, Physics, and Mechanical EngineeringQueensland University of Technology, Gardens Point CampusBrisbaneAustralia

Personalised recommendations