Highly bonded T-Nb2O5/rGO nanohybrids for 4 V quasi-solid state asymmetric supercapacitors with improved electrochemical performance

Research Article
  • 35 Downloads

Abstract

T-Nb2O5/reduced graphene oxide nanohybrids were fabricated via the hydrothermal attachment of Nb2O5 nanowires to dispersed graphene oxide nanosheets followed by a high-temperature phase transformation. Electrochemical measurements showed that the nanohybrid anodes possessed enhanced reversible capacity and superior cycling stability compared to those of a pristine T-Nb2O5 nanowire electrode. Owing to the strong bonds between graphene nanosheets and T-Nb2O5 nanowires,the nanohybrids achieved an initial capacity of 227 mAh·g−1. Additionally, non-aqueous asymmetric supercapacitors (ASCs) were fabricated with the synthesized nanohybrids as the anode and activated carbon as the cathode. The 3 V Li-ion ASC with a LiPF6-based organic electrolyte achieved an energy density of 45.1 Wh·kg−1 at 715.2 W·kg−1. The working potential could be further enhanced to 4 V when a polymer ionogel separator (PVDF-HFP/LiTFSI/EMIMBF4) and formulated ionic liquid electrolyte were employed. Such a quasi-solid state ASC could operate at 60 °C and delivered a maximum energy density of 70 Wh·kg−1 at 1 kW·kg−1.

Keywords

solid-state supercapacitor nanohybrid electrode ionogel polymer electrolyte electrochemical performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The National Key Research and Development Program of China (No. 2016YFB0100303), International Cooperation and Exchange of the National Natural Science Foundation of China (No. 51561145020), Instrument and Equipment Research and Development Project of CAS (No. YZ201221), and CAS/SAFEA International Partnership Program for Creative Research Team (No. 20140491518).

Supplementary material

12274_2018_2049_MOESM1_ESM.pdf (1.6 mb)
Highly bonded T-Nb2O5/rGO nanohybrids for 4 V quasi-solid state asymmetric supercapacitors with improved electrochemical performance

References

  1. [1]
    Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.CrossRefGoogle Scholar
  2. [2]
    Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.CrossRefGoogle Scholar
  3. [3]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  4. [4]
    Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.CrossRefGoogle Scholar
  5. [5]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  6. [6]
    Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522.CrossRefGoogle Scholar
  7. [7]
    Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.CrossRefGoogle Scholar
  8. [8]
    Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790.CrossRefGoogle Scholar
  9. [9]
    Naoi, K.; Naoi, W.; Aoyagi, S.; Miyamoto, J.; Kamino, T. New generation “nanohybrid supercapacitor”. Acc. Chem. Res. 2013, 46, 1075–1083.CrossRefGoogle Scholar
  10. [10]
    Wang, R. T.; Lang, J. W.; Zhang, P.; Lin, Z. Y.; Yan, X. B. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv. Funct. Mater. 2015, 25, 2270–2278.CrossRefGoogle Scholar
  11. [11]
    Aravindan, V.; Gnanaraj, J.; Lee, Y. S.; Madhavi, S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 2014, 114, 11619–11635.CrossRefGoogle Scholar
  12. [12]
    Aravindan, V.; Mhamane, D.; Ling, W. C.; Ogale, S.; Madhavi, S. Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material. ChemSusChem 2013, 6, 2240–2244.CrossRefGoogle Scholar
  13. [13]
    Leng, K.; Zhang, F.; Zhang, L.; Zhang, T. F.; Wu, Y. P.; Lu, Y. H.; Huang, Y.; Chen, Y. S. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res. 2013, 6, 581–592.CrossRefGoogle Scholar
  14. [14]
    Kim, H.; Cho, M. Y.; Kim, M. H.; Park, K. Y.; Gwon, H.; Lee, Y.; Roh, K. C.; Kang, K. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 2013, 3, 1500–1506.CrossRefGoogle Scholar
  15. [15]
    Wang, H. W.; Guan, C.; Wang, X. F.; Fan, H. J. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. Small 2015, 11, 1470–1477.CrossRefGoogle Scholar
  16. [16]
    Zhang, F.; Zhang, T. F.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.; Chen, Y. S. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ. Sci. 2013, 6, 1623–1632.CrossRefGoogle Scholar
  17. [17]
    Yang, Z. B.; Ren, J.; Zhang, Z. T.; Chen, X. L.; Guan, G. Z.; Qin, L. B.; Zhang, Y.; Peng, H. S. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015, 115, 5159–5223.CrossRefGoogle Scholar
  18. [18]
    Lim, E.; Kim, H.; Jo, C.; Chun, J.; Ku, K.; Kim, S.; Lee, H. I.; Nam, I. S.; Yoon, S.; Kang, K. et al. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano 2014, 8, 8968–8978.CrossRefGoogle Scholar
  19. [19]
    Khomenko, V.; Raymundo-Piñero, E.; Béguin, F. High-energy density graphite/AC capacitor in organic electrolyte. J. Power Sources 2008, 177, 643–651.CrossRefGoogle Scholar
  20. [20]
    Amatucci, G. G.; Badway, F.; Du Pasquier, A.; Zheng, T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 2001, 148, A930–A939.CrossRefGoogle Scholar
  21. [21]
    Zhao, E. B.; Qin, C. L.; Jung, H. R.; Berdichevsky, G.; Nese, A.; Marder, S.; Yushin, G. Lithium titanate confined in carbon nanopores for asymmetric supercapacitors. ACS Nano 2016, 10, 3977–3984.CrossRefGoogle Scholar
  22. [22]
    Yu, X. L.; Zhan, C. Z.; Lv, R. T.; Bai, Y.; Lin, Y. X.; Huang, Z. H.; Shen, W. C.; Qiu, X. P.; Kang, F. Y. Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy 2015, 15, 43–53.CrossRefGoogle Scholar
  23. [23]
    Kong, L. P.; Zhang, C. F.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 2015, 9, 11200–11208.CrossRefGoogle Scholar
  24. [24]
    Rani, R. A.; Zoolfakar, A. S.; O’Mullane, A. P.; Austin, M. W.; Kalantar-Zadeh, K. Thin films and nanostructures of niobium pentoxide: Fundamental properties, synthesis methods and applications. J. Mater. Chem. A 2014, 2, 15683–15703.CrossRefGoogle Scholar
  25. [25]
    Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.CrossRefGoogle Scholar
  26. [26]
    Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604.CrossRefGoogle Scholar
  27. [27]
    Kim, J. W.; Augustyn, V.; Dunn, B. The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Adv. Energy Mater. 2012, 2, 141–148.CrossRefGoogle Scholar
  28. [28]
    Lubimtsev, A. A.; Kent, P. R. C.; Sumpter, B. G.; Ganesh, P. Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals. J. Mater. Chem. A 2013, 1, 14951–14956.CrossRefGoogle Scholar
  29. [29]
    Kong, L. P.; Zhang, C. F.; Zhang, S. M.; Wang, J. T.; Cai, R.; Lv, C. X.; Qiao, W. M.; Ling, L. C.; Long, D. H. High-power and high-energy asymmetric supercapacitors based on Li+ intercalation into a T-Nb2O5/graphene pseudocapacitive electrode. J. Mater. Chem. A 2014, 2, 17962–17970.CrossRefGoogle Scholar
  30. [30]
    Wang, X. L.; Li, G.; Chen, Z.; Augustyn, V.; Ma, X. M.; Wang, G.; Dunn, B.; Lu, Y. F. High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv. Energy Mater. 2011, 1, 1089–1093.CrossRefGoogle Scholar
  31. [31]
    Ma, G. Q.; Li, K.; Li, Y. Y.; Gao, B.; Ding, T. P.; Zhong, Q. Z.; Su, J.; Gong, L.; Chen, J.; Yuan, L. Y. et al. High-performance hybrid supercapacitor based on graphene-wrapped mesoporous T-Nb2O5 nanospheres anode and mesoporous carbon-coated graphene cathode. ChemElectroChem 2016, 3, 1360–1368.CrossRefGoogle Scholar
  32. [32]
    Wang, X.; Yan, C. Y.; Yan, J.; Sumboja, A.; Lee, P. S. Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device. Nano Energy 2015, 11, 765–772.CrossRefGoogle Scholar
  33. [33]
    Li, S.; Xu, Q.; Uchaker, E.; Cao, X.; Cao, G. Z. Comparison of amorphous, pseudohexagonal and orthorhombic Nb2O5 for high-rate lithium ion insertion. CrystEngComm 2016, 18, 2532–2540.CrossRefGoogle Scholar
  34. [34]
    Kong, L. P.; Zhang, C. F.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon core-shell microspheres for ultrahigh-rate intercalation pseudocapacitors. Sci. Rep. 2016, 6, 21177.CrossRefGoogle Scholar
  35. [35]
    Ji, L. W.; Meduri, P.; Agubra, V.; Xiao, X. C.; Alcoutlabi, M. Graphene-based nanocomposites for energy storage. Adv. Energy Mater. 2016, 6, 1502159.CrossRefGoogle Scholar
  36. [36]
    Mahmood, N.; Zhang, C. Z.; Yin, H.; Hou, Y. L. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2014, 2, 15–32.CrossRefGoogle Scholar
  37. [37]
    Ma, Y. F.; Chang, H. C.; Zhang, M.; Chen, Y. S. Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 2015, 27, 5296–5308.CrossRefGoogle Scholar
  38. [38]
    Wang, L. P.; Yu, L. H.; Satish, R.; Zhu, J. X.; Yan, Q. Y.; Srinivasan, M.; Xu, Z. C. High-performance hybrid electrochemical capacitor with binder-free Nb2O5@ graphene. RSC Adv. 2014, 4, 37389–37394.CrossRefGoogle Scholar
  39. [39]
    Fedorov, M. V.; Kornyshev, A. A. Ionic liquids at electrified interfaces. Chem. Rev. 2014, 114, 2978–3036.CrossRefGoogle Scholar
  40. [40]
    Zhang, H. T.; Zhang, S. J.; Zhang, X. X. Experimental discovery of magnetoresistance and its memory effect in methylimidazolium-type iron-containing ionic liquids. Chem. Mater. 2016, 28, 8710–8714.CrossRefGoogle Scholar
  41. [41]
    Zhao, Y. F; Zhang, H. T; Liu, A.; Jiao, Y. Z; Shim, J. J; Zhang, S. J. Fabrication of nanoarchitectured TiO2(B)@C/rGO electrode for 4V quasi-solid-state nanohybrid supercapacitors. Electrochim. Acta 2017, 258, 343–352.CrossRefGoogle Scholar
  42. [42]
    Tian, W. Q.; Gao, Q. M.; Tan, Y. L.; Yang, K.; Zhu, L. H.; Yang, C. X.; Zhang, H. Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mater. Chem. A 2015, 3, 5656–5664.CrossRefGoogle Scholar
  43. [43]
    Pandey, G. P.; Hashmi, S. A. Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. J. Mater. Chem. A 2013, 1, 3372–3378.CrossRefGoogle Scholar
  44. [44]
    Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S. Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem., Int. Ed. 2016, 55, 500–513.CrossRefGoogle Scholar
  45. [45]
    Zhang, F.; Lu, Y. H.; Yang, X.; Zhang, L.; Zhang, T. F.; Leng, K.; Wu, Y. P.; Huang, Y.; Ma, Y. F.; Chen, Y. S. A flexible and high-voltage internal tandem supercapacitor based on graphene-based porous materials with ultrahigh energy density. Small 2014, 10, 2285–2292.CrossRefGoogle Scholar
  46. [46]
    Sun, S. X.; Lang, J. W.; Wang, R. T.; Kong, L. B.; Li, X. C.; Yan, X. B. Identifying pseudocapacitance of Fe2O3 in an ionic liquid and its application in asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 14550–14556.CrossRefGoogle Scholar
  47. [47]
    Maiti, S.; Pramanik, A.; Mahanty, S. Influence of imidazolium-based ionic liquid electrolytes on the performance of nano-structured MnO2 hollow spheres as electrochemical supercapacitor. RSC Adv. 2015, 5, 41617–41626.CrossRefGoogle Scholar
  48. [48]
    Ye, Y. S.; Rick, J.; Hwang, B. J. Ionic liquid polymer electrolytes. J. Mater. Chem. A 2013, 1, 2719–2743.CrossRefGoogle Scholar
  49. [49]
    Joost, M.; Kim, G. T.; Winter, M.; Passerini, S. Phase stability of Li-ion conductive, ternary solid polymer electrolytes. Electrochim. Acta 2013, 113, 181–185.CrossRefGoogle Scholar
  50. [50]
    Lewandowski, A.; Swiderska-Mocek, A.; Waliszewski, L. Li+ conducting polymer electrolyte based on ionic liquid for lithium and lithium-ion batteries. Electrochim. Acta 2013, 92, 404–411.CrossRefGoogle Scholar
  51. [51]
    Lian, P. C.; Zhu, X. F.; Xiang, H. F.; Li, Z.; Yang, W. S.; Wang, H. H. Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta 2010, 56, 834–840.CrossRefGoogle Scholar
  52. [52]
    Long, D. H.; Li, W.; Qiao, W. M.; Miyawaki, J.; Yoon, S. H.; Mochida, I.; Ling, L. C. Graphitization behaviour of chemically derived graphene sheets. Nanoscale 2011, 3, 3652–3656.CrossRefGoogle Scholar
  53. [53]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  54. [54]
    Lim, E.; Jo, C.; Kim, M. S.; Kim, M. H.; Chun, J.; Kim, H.; Park, J.; Roh, K. C.; Kang, K.; Yoon, S. et al. High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv. Funct. Mater. 2016, 26, 3711–3719.CrossRefGoogle Scholar
  55. [55]
    Wang, L.; Bi, X. F.; Yang, S. B. Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv. Mater. 2016, 28, 7672–7679.CrossRefGoogle Scholar
  56. [56]
    Jiao, Y. Z.; Zhang, H. T.; Dong, T.; Shen, P.; Cai, Y. J.; Zhang, H. L.; Zhang, S. J. Improved electrochemical performance in nanoengineered pomegranate-shaped Fe3O4/RGO nanohybrids anode material. J. Mater. Sci. 2017, 52, 3233–3243.CrossRefGoogle Scholar
  57. [57]
    Jiang, Z. J.; Jiang, Z. Q. Fabrication of Nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 19082–19091.CrossRefGoogle Scholar
  58. [58]
    Come, J.; Augustyn, V.; Kim, J. W.; Rozier, P.; Taberna, P. L.; Gogotsi, P.; Long, J. W.; Dunn, B.; Simon, P. Electrochemical kinetics of nanostructured Nb2O5 electrodes. J. Electrochem. Soc. 2014, 161, A718–A725.CrossRefGoogle Scholar
  59. [59]
    Wang, F. X.; Wang, C.; Zhao, Y. J.; Liu, Z. C.; Chang, Z.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P.; Zhao, D. Y. A quasi-solid-state Li-ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets. Small 2016, 12, 6207–6213.CrossRefGoogle Scholar
  60. [60]
    Song, H.; Fu, J. J.; Ding, K.; Huang, C.; Wu, K.; Zhang, X. M.; Gao, B.; Huo, K. F.; Peng, X.; Chu, P. K. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors. J. Power Sources 2016, 328, 599–606.CrossRefGoogle Scholar
  61. [61]
    Ahn, Y. K.; Kim, B.; Ko, J.; You, D. J.; Yin, Z. X.; Kim, H.; Shin, D.; Cho, S.; Yoo, J.; Kim, Y. S. All solid state flexible supercapacitors operating at 4V with a cross-linked polymer-ionic liquid electrolyte. J. Mater. Chem. A 2016, 4, 4386–4391.CrossRefGoogle Scholar
  62. [62]
    Wang, H. W.; Hu, Z. A.; Chang, Y. Q.; Chen, Y. L.; Wu, H. Y.; Zhang, Z. Y.; Yang, Y. Y. Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors. J Mater. Chem. 2011, 21, 10504–10511.CrossRefGoogle Scholar
  63. [63]
    Shen, B. S.; Guo, R. S.; Lang, J. W.; Liu, L.; Liu, L. Y.; Yan, X. B. A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte. J. Mater. Chem. A 2016, 4, 8316–8327.CrossRefGoogle Scholar
  64. [64]
    Ujjain, S. K.; Sahu, V.; Sharma, R. K.; Singh, G. High performance, all solid state, flexible supercapacitor based on ionic liquid functionalized graphene. Electrochim. Acta 2015, 157, 245–251.CrossRefGoogle Scholar
  65. [65]
    Hollóczki, O.; Malberg, F.; Welton, T.; Kirchner, B. On the origin of ionicity in ionic liquids. Ion pairing versus charge transfer. Phys. Chem. Chem. Phys. 2014, 16, 16880–16890.CrossRefGoogle Scholar
  66. [66]
    Ni, J. F.; Wang, W. C.; Wu, C.; Liang, H. C.; Maier, J.; Yu, Y.; Li, L. Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv. Mater. 2017, 29, 1605607.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  2. 2.School of Chemical and Material EngineeringJiangnan UniversityWuxiChina
  3. 3.Department of Chemical and Material EngineeringHefei UniversityHefeiChina
  4. 4.Zhengzhou Key Laboratory of Energy Storage Science and TechnologyZhengzhou Institute of Emerging Industrial TechnologyZhengzhouChina

Personalised recommendations