Nano Research

, Volume 11, Issue 9, pp 4654–4663 | Cite as

Controllable emission bands and morphologies of high-quality CsPbX3 perovskite nanocrystals prepared in octane

  • Shuai Ye
  • Mengjie Zhao
  • Jun Song
  • Junle Qu
Research Article


Halide perovskite (CsPbX3, X = Cl, Br, or I) quantum dots have received increasing attention as novel colloidal nanocrystals (NCs). Accurate control of emission bands and NC morphologies are vital prerequisites for most CsPbX3 NC practical applications. Therefore, a facile method of synthesizing CsPbX3 (X = Cl, Br, or I) NCs in the nonpolar solvent octane was developed. The process was conducted in air at ∼ 90 °C to synthesize high-quality CsPbX3 NCs showing 12–44 nm wide emission and high photoluminescence quantum yield, exceeding 90%. An in situ anion-exchange method was developed to tune CsPbX3 NC photoluminescence emission, using PbX2 dissolved in octane as the halide source. NC morphology was controlled by dissolving specific metal–organic salts in the precursor solution prior to nucleation, and nanocubes, nanodots, nanosheets, nanoplatelets, nanorods, and nanowires were obtained following the same general method providing a facile, versatile route to controlling CsPbX3 NC emission bands and morphologies, which will broaden the range of CsPbX3 NC practical applications.


CsPbX3 quantum dots nonpolar solvent octane controllable composition controllable morphology high quantum yield 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 61605124, 61775145, 31771584, 61525503, 61620106016, and 81727804); the National Basic Research Program of China (No. 2015CB352005); Guangdong Natural Science Foundation Innovation Team (No. 2014A030312008); Hong Kong, Macao and Taiwan cooperation innovation platform & major projects of international cooperation in Colleges and Universities in Guangdong Province (No. 2015KGJHZ002); and Shenzhen Basic Research Project (Nos. JCYJ20170412110212234, JCYJ2016030809303 5903, JCYJ20150930104948169, JCYJ20160328144746940, and GJHZ20160226202139185).

Supplementary material

12274_2018_2046_MOESM1_ESM.pdf (3.2 mb)
Controllable emission bands and morphologies of high-quality CsPbX3 perovskite nanocrystals prepared in octane


  1. [1]
    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.CrossRefGoogle Scholar
  2. [2]
    Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892.CrossRefGoogle Scholar
  3. [3]
    Chen, M.; Zou, Y. T.; Wu, L. Z.; Pan, Q.; Yang, D.; Hu, H. C.; Tan, Y. S.; Zhong, Q. X.; Xu, Y.; Liu, H. Y. et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: From nanocube to ultrathin nanowire. Adv. Funct. Mater. 2017, 27, 1701121.CrossRefGoogle Scholar
  4. [4]
    Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.CrossRefGoogle Scholar
  5. [5]
    Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.CrossRefGoogle Scholar
  6. [6]
    Liu, F.; Zhang, Y. H.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373–10383.CrossRefGoogle Scholar
  7. [7]
    Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X. K.; Khan, J.; Tang, J.; Song, H. S. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 2017, 11, 9294–9302.CrossRefGoogle Scholar
  8. [8]
    Zhou, D. L.; Liu, D. L.; Pan, G. C.; Chen, X.; Li, D. Y.; Xu, W.; Bai, X.; Song, H. W. Cerium and ytterbium codoped halide perovskite quantum dots: A novel and efficient downconverter for improving the performance of silicon solar cells. Adv. Mater. 2017, 29, 1704149.CrossRefGoogle Scholar
  9. [9]
    Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposite (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed. 2016, 55, 7924–7929.CrossRefGoogle Scholar
  10. [10]
    Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.CrossRefGoogle Scholar
  11. [11]
    Pan, J.; Quan, L. N.; Zhao, Y. B.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M. J.; Sinatra, L.; Alyami, N. M.; Liu, J. K. et al. Highly efficient perovskite-quantum-dot lightemitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718–8725.CrossRefGoogle Scholar
  12. [12]
    Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.CrossRefGoogle Scholar
  13. [13]
    Yang, Z. Y.; Janmohamed, A.; Lan, X. Z.; García de Arquer, F. P.; Voznyy, O.; Yassitepe, E.; Kim, G. H.; Ning, Z. J.; Gong, X. W.; Comin, R. et al. Colloidal quantum dot photovoltaics enhanced by perovskite shelling. Nano Lett. 2015, 15, 7539–7543.CrossRefGoogle Scholar
  14. [14]
    Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.CrossRefGoogle Scholar
  15. [15]
    Xu, Y. Q.; Chen, Q.; Zhang, C. F.; Wang, R.; Wu, H.; Zhang, X. Y.; Xing, G. C.; Yu, W. W.; Wang, X. Y.; Zhang, Y. et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 2016, 138, 3761–3768.CrossRefGoogle Scholar
  16. [16]
    Zhang, Q.; Su, R.; Liu, X. F.; Xing, J.; Sum, T. C.; Xiong, Q. H. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 2016, 26, 6238–6245.CrossRefGoogle Scholar
  17. [17]
    Tang, X. S.; Zu, Z. Q.; Shao, H. B.; Hu, W.; Zhou, M.; Deng, M.; Chen, W. W.; Zang, Z. G.; Zhu, T.; Xue, J. M. All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application. Nanoscale 2016, 8, 15158–15161.CrossRefGoogle Scholar
  18. [18]
    Tian, W. M.; Cui, R. R.; Leng, J.; Liu, J. X.; Li, Y. J.; Zhao, C. Y.; Zhang, J.; Deng, W. Q.; Lian, T. Q.; Jin, S. Y. Limiting perovskite solar cell performance by heterogeneous carrier extraction. Angew. Chem., Int. Ed. 2016, 55, 13067–13071.CrossRefGoogle Scholar
  19. [19]
    Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016, 28, 6804–6834.CrossRefGoogle Scholar
  20. [20]
    Yang, H. Z.; Zhang, Y. H.; Pan, J.; Yin, J.; Bakr, O. M.; Mohammed, O. F. Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities. Chem. Mater. 2017, 29, 8978–8982.CrossRefGoogle Scholar
  21. [21]
    Parobek, D.; Dong, Y. T.; Qiao, T.; Rossi, D.; Son, D. H. Photoinduced anion exchange in cesium lead halide perovskite nanocrystals. J. Am. Chem. Soc. 2017, 139, 4358–4361.CrossRefGoogle Scholar
  22. [22]
    Zhang, D. D.; Yang, Y. M.; Bekenstein, Y.; Yu, Y.; Gibson, N. A.; Wong, A. B.; Eaton, S. W.; Kornienko, N.; Kong, Q.; Lai, M. L. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc. 2016, 138, 7236–7239.CrossRefGoogle Scholar
  23. [23]
    Hoffman, J. B.; Schleper, A. L.; Kamat, P. V. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3-x through halide exchange. J. Am. Chem. Soc. 2016, 138, 8603–8611.CrossRefGoogle Scholar
  24. [24]
    Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.CrossRefGoogle Scholar
  25. [25]
    Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.CrossRefGoogle Scholar
  26. [26]
    Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067–2070.CrossRefGoogle Scholar
  27. [27]
    Wang, K. H.; Wu, L.; Li, L.; Yao, H. B.; Qian, H. S.; Yu, S. H. Large-scale synthesis of highly luminescent perovskiterelated CsPb2Br5 nanoplatelets and their fast anion exchange. Angew. Chem., Int. Ed. 2016, 55, 8328–8332.CrossRefGoogle Scholar
  28. [28]
    Jellicoe, T. C.; Richter, J. M.; Glass, H. F.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944.CrossRefGoogle Scholar
  29. [29]
    Shamsi, J.; Dang, Z. Y.; Bianchini, P.; Canale, C.; Di Stasio, F.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 2016, 138, 7240–7243.CrossRefGoogle Scholar
  30. [30]
    Lai, M. L.; Kong, Q.; Bischak, C. G.; Yu, Y.; Dou, L. T.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 2017, 10, 1107–1114.CrossRefGoogle Scholar
  31. [31]
    Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 2016, 10, 3648–3657.CrossRefGoogle Scholar
  32. [32]
    Chen, X.; Peng, L. C.; Huang, K. K.; Shi, Z.; Xie, R. G.; Yang, W. S. Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Res. 2016, 9, 1994–2006.CrossRefGoogle Scholar
  33. [33]
    Tsiwah, E. A.; Ding, Y. X.; Li, Z. X.; Zhao, Z. Y.; Wang, M. Q.; Hu, C.; Liu, X. Q.; Sun, C. H.; Zhao, X. J.; Xie, Y. One-pot scalable synthesis of all-inorganic perovskite nanocrystals with tunable morphology, composition and photoluminescence. CrystEngComm 2017, 19, 7041–7049.CrossRefGoogle Scholar
  34. [34]
    Tong, Y.; Bohn, B. J.; Bladt, E.; Wang, K.; Müller- Buschbaum, P.; Bals, S.; Urban, A. S.; Polavarapu, L.; Feldmann, J. From precursor powders to CsPbX3 perovskite nanowires: One-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem., Int. Ed. 2017, 56, 13887–13892.CrossRefGoogle Scholar
  35. [35]
    Ye, S.; Yu, M. H.; Zhao, M. J.; Song, J.; Qu, J. L. Low temperature synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals in open air and their upconversion luminescence. J. Alloy. Compd. 2018, 730, 62–70.CrossRefGoogle Scholar
  36. [36]
    Liu, H. W.; Wu, Z. N.; Shao, J. R.; Yao, D.; Gao, H.; Liu, Y.; Yu, W. L.; Zhang, H.; Yang, B. CsPbxMn1-xCl3 perovskite quantum dots with high Mn substitution ratio. ACS Nano 2017, 11, 2239–2247.CrossRefGoogle Scholar
  37. [37]
    Liu, H. W.; Wu, Z. N.; Gao, H.; Shao, J. R.; Zou, H. Y.; Yao, D.; Liu, Y.; Zhang, H.; Yang, B. One-step preparation of cesium lead halide CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals by microwave irradiation. ACS Appl. Mater. Interfaces 2017, 9, 42919–42927.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations