Predicting the properties of two-dimensional (2D) materials as graphene and hexagonal boron nitride (h-BN) monolayers after their growth on any given substrate is a major challenge. While the influence of the electron configuration of the atoms of the underlying surface is well-understood, the effect of substrate geometry still remains unclear. The structural properties of h-BN monolayers grown on a rectangularly packed Rh(110) surface were characterized in situ by ultrahigh vacuum scanning tunneling microscopy and were compared to those that this material exhibits when grown on substrates showing different crystallographic orientations. Although the h-BN monolayer grown on Rh(110) was dominated by a unique quasiunidimensional moiré pattern, suggesting considerable interface interaction, the moiré corrugation was unexpectedly smaller than those reported for strongly interacting interfaces with hexagonal-terminated substrates, owing to differences in the possible binding landscapes at interfaces with differently oriented substrates. Moreover, a rule was derived for predicting how interface corrugation and the existence and extent of subregions within moiré supercells containing favorable sites for orbital mixing between h-BN monolayers and their supports depend on substrate symmetry. These general symmetry considerations can be applied to numerous 2D materials, including graphene, thereby enabling the prediction of how substrate choice determines the properties of these materials. Furthermore, they could also provide new routes for tuning 2D material properties and for developing nanotemplates showing different geometries for growing adsorbate superlattices.
Authors acknowledge financial support from AEI and FEDER under project MAT2016-77852-C2-2-R (AEI/FEDER, UE). A.J.M.-G. acknowledges funding from the Spanish MINECO through the Juan de la Cierva program (ref. IJCI-2014-19209).
Oshima, C.; Nagashima, A. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys.: Condes. Matter1997, 9, 1.Google Scholar
[2]
Laskowski, R.; Blaha, P.; Schwarz, K. Bonding of hexagonal BN to transition metal surfaces: An ab initio density-functional theory study. Phys. Rev. B2008, 78, 045409.CrossRefGoogle Scholar
[3]
Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B2009, 79, 195425.CrossRefGoogle Scholar
[4]
Wintterlin, J.; Bocquet, M. L. Graphene on metal surfaces. Surf. Sci.2009, 603, 1841–1852.CrossRefGoogle Scholar
[5]
Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep.2012, 67, 83–115.CrossRefGoogle Scholar
[6]
Marchini, S.; Günther, S.; Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B2007, 76, 075429.CrossRefGoogle Scholar
[7]
de Parga, A. L. V.; Calleja, F.; Borca, B.; Passeggi, M. C. G.; Hinarejos, J. J.; Guinea, F.; Miranda, R. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett.2008, 100, 056807.CrossRefGoogle Scholar
[8]
Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett.2008, 8, 565–570.CrossRefGoogle Scholar
[9]
Grüneis, A.; Vyalikh, D. V. Tunable hybridization between electronic states of graphene and a metal surface. Phys. Rev. B2008, 77, 193401.CrossRefGoogle Scholar
[10]
Pletikosic, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett.2009, 102, 056808.CrossRefGoogle Scholar
[11]
Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B2009, 80, 245411.CrossRefGoogle Scholar
[12]
Voloshina, E. N.; Dedkov, Y. S.; Torbrügge, S.; Thissen, A.; Fonin, M. Graphene on Rh(111): Scanning tunneling and atomic force microscopies studies. Appl. Phys. Lett.2012, 100, 241606.CrossRefGoogle Scholar
[13]
Rusponi, S.; Papagno, M.; Moras, P.; Vlaic, S.; Etzkorn, M.; Sheverdyaeva, P. M.; Pacile, D.; Brune, H.; Carbone, C. Highly anisotropic Dirac cones in epitaxial graphene modulated by an island superlattice. Phys. Rev. Lett.2010, 105, 246803.CrossRefGoogle Scholar
[14]
Martín-Recio, A.; Romero-Muñiz, C.; Martínez Galera, A. J.; Pou, P.; Pérez, R.; Gómez-Rodríguez, J. M. Tug-of-war between corrugation and binding energy: Revealing the formation of multiple moiré patterns on a strongly interacting graphene-metal system. Nanoscale2015, 7, 11300–11309.CrossRefGoogle Scholar
[15]
González-Herrero, H.; Pou, P.; Lobo-Checa, J.; Fernández-Torre, D.; Craes, F.; Martínez-Galera, A. J.; Ugeda, M. M.; Corso, M.; Enrique Ortega, J.; Gómez-Rodríguez, J. M. et al. Graphene tunable transparency to tunneling electrons: A direct tool to measure the local coupling. ACS Nano2016, 10, 5131–5144.CrossRefGoogle Scholar
[16]
Nagashima, A.; Tejima, N.; Gamou, Y.; Kawai, T.; Oshima, C. Electronic-structure of monolayer hexagonal boron-nitride physisorbed on metal surfaces. Phys. Rev. Lett.1995, 75, 3918–3921.CrossRefGoogle Scholar
[17]
Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science2004, 303, 217–220.CrossRefGoogle Scholar
[18]
Preobrajenski, A. B.; Vinogradov, A. S.; Mårtensson, N. Monolayer of h-BN chemisorbed on Cu(111) and Ni(111): The role of the transition metal 3d states. Surf. Sci.2005, 582, 21–30.CrossRefGoogle Scholar
[19]
Preobrajenski, A. B.; Vinogradov, A. S.; Ng, M. L.; Cavar, E.; Westerström, R.; Mikkelsen, A.; Lundgren, E.; Mårtensson, N. Influence of chemical interaction at the lattice-mismatched h-BN/Rh(111) and h-BN/Pt(111) interfaces on the overlayer morphology. Phys. Rev. B2007, 75, 245412.CrossRefGoogle Scholar
[20]
Preobrajenski, A. B.; Nesterov, M. A.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Monolayer h-BN on lattice-mismatched metal surfaces: On the formation of the nanomesh. Chem. Phys. Lett.2007, 446, 119–123.CrossRefGoogle Scholar
[21]
Brugger, T.; Günther, S.; Wang, B.; Dil, J. H.; Bocquet, M. L.; Osterwalder, J.; Wintterlin, J.; Greber, T. Comparison of electronic structure and template function of single-layer graphene and a hexagonal boron nitride nanomesh on Ru(0001). Phys. Rev. B2009, 79, 045407.CrossRefGoogle Scholar
[22]
Doll, G. L.; Speck, J. S.; Dresselhaus, G.; Dresselhaus, M. S.; Nakamura, K.; Tanuma, S. I. Intercalation of hexagonal boron nitride with potassium. J. Appl. Phys.1989, 66, 2554–2558.CrossRefGoogle Scholar
[23]
Usachov, D.; Adamchuk, V. K.; Haberer, D.; Grüneis, A.; Sachdev, H.; Preobrajenski, A. B.; Laubschat, C.; Vyalikh, D. V. Quasifreestanding single-layer hexagonal boron nitride as a substrate for graphene synthesis. Phys. Rev. B2010, 82, 075415.CrossRefGoogle Scholar
[24]
Brugger, T.; Ma, H. F.; Iannuzzi, M.; Berner, S.; Winkler, A.; Hutter, J.; Osterwalder, J.; Greber, T. Nanotexture switching of single-layer hexagonal boron nitride on rhodium by intercalation of hydrogen atoms. Angew. Chem., Int. Ed.2010, 49, 6120–6124.CrossRefGoogle Scholar
[25]
Larciprete, R.; Ulstrup, S.; Lacovig, P.; Dalmiglio, M.; Bianchi, M.; Mazzola, F.; Hornekaer, L.; Orlando, F.; Baraldi, A.; Hofmann, P. et al. Oxygen switching of the epitaxial graphene- metal interaction. ACS Nano2012, 6, 9551–9558.CrossRefGoogle Scholar
[26]
Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z. et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Appl. Phys. Lett.2012, 100, 093101.CrossRefGoogle Scholar
[27]
Petrovic, M.; Rakic, I. Š.; Runte, S.; Busse, C.; Sadowski, J. T.; Lazic, P.; Pletikosic, I.; Pan, Z. H.; Milun, M.; Pervan, P. et al. The mechanism of caesium intercalation of graphene. Nat. Commun.2013, 4, 2772.CrossRefGoogle Scholar
[28]
Ng, M. L.; Shavorskiy, A.; Rameshan, C.; Mikkelsen, A.; Lundgren, E.; Preobrajenski, A.; Bluhm, H. Reversible modification of the structural and electronic properties of a boron nitride monolayer by Co intercalation. ChemPhysChem2015, 16, 923–927.CrossRefGoogle Scholar
[29]
Schröder, U. A.; Grånäs, E.; Gerber, T.; Arman, M. A.; Martínez-Galera, A. J.; Schulte, K.; Andersen, J. N.; Knudsen, J.; Michely, T. Etching of graphene on Ir(111) with molecular oxygen. Carbon2016, 96, 320–331.CrossRefGoogle Scholar
[30]
Martínez-Galera, A. J.; Schröder, U. A.; Huttmann, F.; Jolie, W.; Craes, F.; Busse, C.; Caciuc, V.; Atodiresei, N.; Blügel, S.; Michely, T. Oxygen orders differently under graphene: New superstructures on Ir(111). Nanoscale2016, 8, 1932–1943.CrossRefGoogle Scholar
[31]
Wan, J. Y.; Lacey, S. D.; Dai, J. Q.; Bao, W. Z.; Fuhrer, M. S.; Hu, L. B. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chem. Soc. Rev.2016, 45, 6742–6765.CrossRefGoogle Scholar
[32]
Schröder, U. A.; Petrovic, M.; Gerber, T.; Martínez-Galera, A. J.; Grånäs, E.; Arman, M. A.; Herbig, C.; Schnadt, J.; Kralj, M.; Knudsen, J. et al. Core level shifts of intercalated graphene. 2D Mater.2017, 4, 015013.CrossRefGoogle Scholar
[33]
Laskowski, R.; Blaha, P.; Gallauner, T.; Schwarz, K. Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) Surface. Phys. Rev. Lett.2007, 98, 106802.CrossRefGoogle Scholar
[34]
Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B2008, 78, 073401.CrossRefGoogle Scholar
[35]
Gotterbarm, K.; Zhao, W.; Höfert, O.; Gleichweit, C.; Papp, C.; Steinrück, H. P. Growth and oxidation of graphene on Rh(111). Phys. Chem. Chem. Phys.2013, 15, 19625–19631.CrossRefGoogle Scholar
[36]
Orlando, F.; Larciprete, R.; Lacovig, P.; Boscarato, I.; Baraldi, A.; Lizzit, S. Epitaxial growth of hexagonal boron nitride on Ir(111). J. Phys. Chem. C2012, 116, 157–164.CrossRefGoogle Scholar
[37]
N’Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-dimensional Ir cluster lattice on a graphene moiré on Ir(111). Phys. Rev. Lett.2006, 97, 215501.CrossRefGoogle Scholar
[38]
Brihuega, I.; Michaelis, C. H.; Zhang, J.; Bose, S.; Sessi, V.; Honolka, J.; Schneider, M. A.; Enders, A.; Kern, K. Electronic decoupling and templating of Co nanocluster arrays on the boron nitride nanomesh. Surf. Sci.2008, 602, L95–L99.CrossRefGoogle Scholar
[39]
N'Diaye, A. T.; Gerber, T.; Busse, C.; Myslivecek, J.; Coraux, J.; Michely, T. A versatile fabrication method for cluster superlattices. New J. Phys.2009, 11, 103045.CrossRefGoogle Scholar
[40]
Donner, K.; Jakob, P. Structural properties and site specific interactions of Pt with the graphene/Ru(0001) moiré overlayer. J. Chem. Phys.2009, 131, 164701.CrossRefGoogle Scholar
[41]
Cavallin, A.; Pozzo, M.; Africh, C.; Baraldi, A.; Vesselli, E.; Dri, C.; Comelli, G.; Larciprete, R.; Lacovig, P.; Lizzit, S. et al. Local electronic structure and density of edge and facet atoms at Rh nanoclusters self-assembled on a graphene template. ACS Nano2012, 6, 3034–3043.CrossRefGoogle Scholar
[42]
Martínez-Galera, A. J.; Brihuega, I.; Gutiérrez-Rubio, A.; Stauber, T.; Gómez-Rodríguez, J. M. Towards scalable nano- engineering of graphene. Sci. Rep.2014, 4, 7314.CrossRefGoogle Scholar
[43]
Martínez-Galera, A. J.; Brihuega, I.; Gómez-Rodríguez, J. M. Influence of the rotational domain in the growth of transition metal clusters on graphene. J. Phys. Chem. C2015, 119, 3572–3578.CrossRefGoogle Scholar
[44]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.CrossRefGoogle Scholar
[45]
Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater.2004, 3, 404–409.CrossRefGoogle Scholar
[46]
Hui, F.; Pan, C. B.; Shi, Y. Y.; Ji, Y. F.; Grustan-Gutierrez, E.; Lanza, M. On the use of two dimensional hexagonal boron nitride as dielectric. Microelectron. Eng.2016, 163, 119–133.CrossRefGoogle Scholar
[47]
Ji, Y. F.; Pan, C. B.; Zhang, M. Y.; Long, S. B.; Lian, X. J.; Miao, F.; Hui, F.; Shi, Y. Y.; Larcher, L.; Wu, E. et al. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown. Appl. Phys. Lett.2016, 108, 012905.CrossRefGoogle Scholar
[48]
Jiang, L. L.; Shi, Y. Y.; Hui, F.; Tang, K. C.; Wu, Q.; Pan, C. B.; Jing, X.; Uppal, H.; Palumbo, F.; Lu, G. Y. et al. Dielectric breakdown in chemical vapor deposited hexagonal boron nitride. ACS Appl. Mater. Interfaces2017, 9, 39758–39770.CrossRefGoogle Scholar
[49]
Custance, O.; Brochard, S.; Brihuega, I.; Artacho, E.; Soler, J. M.; Baró, A. M.; Gómez-Rodríguez, J. M. Single adatom adsorption and diffusion on Si(111)-(7×7) surfaces: Scanning tunneling microscopy and first-principles calculations. Phys. Rev. B2003, 67, 235410.CrossRefGoogle Scholar
[50]
Martínez-Galera, A. J.; Gómez-Rodríguez, J. M. Nucleation and growth of the prototype azabenzene 1,3,5-triazine on graphite surfaces at low temperatures. J. Phys. Chem. C2011, 115, 11089–11094.CrossRefGoogle Scholar
[51]
Horcas, I.; Fernández, R.; Gómez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum.2007, 78, 013705.CrossRefGoogle Scholar
[52]
Murray, P. W.; Leibsle, F. M.; Li, Y.; Guo, Q.; Bowker, M.; Thornton, G.; Dhanak, V. R.; Prince, K. C.; Rosei, R. Scanning- tunneling-microscopy study of the oxygen-induced reconstruction of Rh(110). Phys. Rev. B1993, 47, 12976–12979.CrossRefGoogle Scholar
[53]
Murray, P. W.; Leibsle, F. M.; Thornton, G.; Bowker, M.; Dhanak, V. R.; Baraldi, A.; Kiskinova, M.; Rosei, R. Nitrogen-induced reconstruction on Rh(110): Effect of oxygen on the growth and ordering of Rh-N chains. Surf. Sci.1994, 304, 48–58.CrossRefGoogle Scholar
[54]
Africh, C.; Esch, F.; Comelli, G.; Rosei, R. Dynamics of the O induced reconstruction of the Rh(110) surface: A scanning tunnelling microscopy study. J. Chem. Phys.2001, 115, 477–481.CrossRefGoogle Scholar
[55]
Günther, S.; Hoyer, R.; Marbach, H.; Imbihl, R.; Esch, F.; Africh, C.; Comelli, G.; Kiskinova, M. K and mixed K+O adlayers on Rh(110). J. Chem. Phys.2006, 124, 014706.CrossRefGoogle Scholar
[56]
Nguyen, L.; Liu, L. C.; Assefa, S.; Wolverton, C.; Schneider, W. F.; Tao, F. F. Atomic-scale structural evolution of Rh(110) during catalysis. ACS Catal.2017, 7, 664–674.CrossRefGoogle Scholar
[57]
Li, Q. C.; Zou, X. L.; Liu, M. X.; Sun, J. Y.; Gao, Y. B.; Qi, Y.; Zhou, X. B.; Yakobson, B. I.; Zhang, Y. F.; Liu, Z. F. Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111). Nano Lett.2015, 15, 5804–5810.CrossRefGoogle Scholar
[58]
N’Diaye, A. T.; Coraux, J.; Plasa, T. N.; Busse, C.; Michely, T. Structure of epitaxial graphene on Ir(111). New J. Phys.2008, 10, 043033.CrossRefGoogle Scholar
[59]
Chagas, T.; Cunha, T. H. R.; Matos, M. J. S.; dos Reis, D. D.; Araujo, K. A. S.; Malachias, A.; Mazzoni, M. S. C.; Ferlauto, A. S.; Magalhaes-Paniago, R. Room temperature observation of the correlation between atomic and electronic structure of graphene on Cu(110). RSC Adv.2016, 6, 98001–98009.CrossRefGoogle Scholar
[60]
Corso, M.; Greber, T.; Osterwalder, J. h-BN on Pd(110): A tunable system for self-assembled nanostructures? Surf. Sci.2005, 577, L78–L84.Google Scholar
[61]
Vinogradov, N. A.; Zakharov, A. A.; Ng, M. L.; Mikkelsen, A.; Lundgren, E.; Martensson, N.; Preobrajenski, A. B. One-dimensional corrugation of the h-BN monolayer on Fe(110). Langmuir2012, 28, 1775–1781.CrossRefGoogle Scholar
[62]
Allan, M. P.; Berner, S.; Corso, M.; Greber, T.; Osterwalder, J. Tunable self-assembly of one-dimensional nanostructures with orthogonal directions. Nanoscale Res. Lett.2007, 2, 94–99.CrossRefGoogle Scholar
[63]
Müller, F.; Hüfner, S.; Sachdev, H. One-dimensional structure of boron nitride on chromium (110)-a study of the growth of boron nitride by chemical vapour deposition of borazine. Surf. Sci.2008, 602, 3467–3476.CrossRefGoogle Scholar
[64]
Vinogradov, N. A.; Zakharov, A. A.; Kocevski, V.; Rusz, J.; Simonov, K. A.; Eriksson, O.; Mikkelsen, A.; Lundgren, E.; Vinogradov, A. S.; Mårtensson, N. et al. Formation and structure of graphene waves on Fe(110). Phys. Rev. Lett.2012, 109, 026101.CrossRefGoogle Scholar
[65]
Müller, F.; Grandthyll, S. Monolayer formation of hexagonal boron nitride on Ag(001). Surf. Sci.2013, 617, 207–210.CrossRefGoogle Scholar
[66]
Grandthyll, S.; Jacobs, K.; Müller, F. Liquid-source growth of graphene on Ag(001). Phys. Status Solidi B-Basic Solid State Phys.2015, 252, 1695–1699.CrossRefGoogle Scholar
[67]
Rasool, H. I.; Song, E. B.; Mecklenburg, M.; Regan, B. C.; Wang, K. L.; Weiller, B. H.; Gimzewski, J. K. Atomic-scale characterization of graphene grown on copper (100) single crystals. J. Am. Chem. Soc.2011, 133, 12536–12543.CrossRefGoogle Scholar
[68]
Locatelli, A.; Wang, C.; Africh, C.; Stojic, N.; Mentes, T. O.; Comelli, G.; Binggeli, N. Temperature-driven reversible rippling and bonding of a graphene superlattice. ACS Nano2013, 7, 6955–6963.CrossRefGoogle Scholar