Nano Research

, Volume 11, Issue 9, pp 4614–4626 | Cite as

Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries

  • Chen Lu
  • Zhenzhu Li
  • Lianghao Yu
  • Li Zhang
  • Zhou Xia
  • Tao Jiang
  • Wanjian Yin
  • Shixue Dou
  • Zhongfan Liu
  • Jingyu Sun
Research Article


Sodium-ion batteries (SIBs) have been increasingly attracting attention as a sustainable alternative to lithium-ion batteries for scalable energy storage. The key to advanced SIBs relies heavily upon the development of reliable anodes. In this respect, Bi2S3 has been extensively investigated because of its high capacity, tailorable morphology, and low cost. However, the common practices of incorporating carbon species to enhance the electrical conductivity and accommodate the volume change of Bi2S3 anodes so as to boost their durability for Na storage have met with limited success. Herein, we report a simple method to realize the encapsulation of Bi2S3 nanorods within three-dimensional, nitrogen-doped graphene (3DNG) frameworks, targeting flexible and active composite anodes for SIBs. The Bi2S3/3DNG composites displayed outstanding Na storage behavior with a high reversible capacity (649 mAh·g–1 at 62.5 mA·g–1) and favorable durability (307 and 200 mAh·g–1 after 100 cycles at 125 and 312.5 mA·g–1, respectively). In-depth characterization by in situ X-ray diffraction revealed that the intriguing Na storage process of Bi2S3 was based upon a reversible reaction. Furthermore, a full, flexible SIB cell with Na0.4MnO2 cathode and as-prepared composite anode was successfully assembled, and holds a great promise for next-generation, wearable energy storage applications.


sodium-ion battery composite anode bismuth sulfide three-dimensional nitrogen-doped graphene flexible 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 51702225, 21473119, 51675275, 51520105003, and 51432002) and Jiangsu Youth Science Foundation (No. BK20170336). C. L., Z. Z. L., L. H. Y., L. Z., Z. X., T. J., W. J. Y., Z. F. L., and J. Y. S. acknowledge the support from Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Suzhou, China. W. J. Y. and J. Y. S. acknowledge the support from the Thousand Youth Talents Plan of China.

Supplementary material

12274_2018_2042_MOESM1_ESM.pdf (1.5 mb)
Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries


  1. [1]
    Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. A multifunctional 3.5V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 2007, 6, 749–753.CrossRefGoogle Scholar
  2. [2]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  3. [3]
    Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.CrossRefGoogle Scholar
  4. [4]
    Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.CrossRefGoogle Scholar
  5. [5]
    Li, H. S.; Peng, L. L.; Zhu, Y.; Chen, D. H.; Zhang, X. G.; Yu, G. H. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ. Sci. 2016, 9, 3399–3405.CrossRefGoogle Scholar
  6. [6]
    Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.CrossRefGoogle Scholar
  7. [7]
    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.CrossRefGoogle Scholar
  8. [8]
    Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.CrossRefGoogle Scholar
  9. [9]
    Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922.CrossRefGoogle Scholar
  10. [10]
    Peng, L. L.; Zhu, Y.; Chen, D. H.; Ruoff, R. S.; Yu, G. H. Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1600025.CrossRefGoogle Scholar
  11. [11]
    Xu, Y. H.; Zhu, Y. J.; Liu, Y. H.; Wang, C. S. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv. Energy Mater. 2013, 3, 128–133.CrossRefGoogle Scholar
  12. [12]
    Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 2014, 7, 323–328.CrossRefGoogle Scholar
  13. [13]
    Liu, Y. C.; Zhang, N.; Jiao, L. F.; Tao, Z. L.; Chen, J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 214–220.CrossRefGoogle Scholar
  14. [14]
    Su, D. W.; Dou, S. X.; Wang, G. X. Bismuth: A new anode for the Na-ion battery. Nano Energy 2015, 12, 88–95.CrossRefGoogle Scholar
  15. [15]
    Chao, D. L.; Zhu, C. R.; Xia, X. H.; Liu, J. L.; Zhang, X.; Wang, J.; Liang, P.; Lin, J. Y.; Zhang, H.; Shen, Z. X. et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 2015, 15, 565–573.CrossRefGoogle Scholar
  16. [16]
    Sun, W. P.; Rui, X. H.; Yang, D.; Sun, Z. Q.; Li, B.; Zhang, W. Y.; Zong, Y.; Madhavi, S.; Dou, S. X.; Yan, Q. Y. Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano 2015, 9, 11371–11381.CrossRefGoogle Scholar
  17. [17]
    Lu, Y. Y.; Zhang, N.; Jiang, S.; Zhang, Y. D.; Zhou, M.; Tao, Z. L.; Archer, L. A.; Chen, J. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide- graphene foam architecture. Nano Lett. 2017, 17, 3668–3674.CrossRefGoogle Scholar
  18. [18]
    Sun, R. M.; Liu, S. J.; Wei, Q. L.; Sheng, J. Z.; Zhu, S. H.; An, Q. Y.; Mai, L. Q. Mesoporous NiS2 nanospheres anode with pseudocapacitance for high-rate and long-life sodium-ion battery. Small 2017, 13, 1701744.CrossRefGoogle Scholar
  19. [19]
    Xiong, X. H.; Yang, C. H.; Wang, G. H.; Lin, Y. W.; Ou, X.; Wang, J.-H.; Zhao, B. T.; Liu, M. L.; Lin, Z.; Huang, K. SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1757–1763.CrossRefGoogle Scholar
  20. [20]
    Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12794–12798.CrossRefGoogle Scholar
  21. [21]
    Sun, W. P.; Rui, X. H.; Zhang, D.; Jiang, Y. Z.; Sun, Z. Q.; Liu, H. K.; Dou, S. X. Bismuth sulfide: A high-capacity anode for sodium-ion batteries. J. Power Sources 2016, 309, 135–140.CrossRefGoogle Scholar
  22. [22]
    Ni, J. F.; Zhao, Y.; Liu, T. T.; Zheng, H. H.; Gao, L. J.; Yan, C. L.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798.CrossRefGoogle Scholar
  23. [23]
    Liang, H. C.; Ni, J. F.; Li, L. Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage. Nano Energy 2017, 33, 213–220.CrossRefGoogle Scholar
  24. [24]
    Wu, T.; Zhou, X. G.; Zhang, H.; Zhong, X. H. Bi2S3 nanostructures: A new photocatalyst. Nano Res. 2010, 3, 379–386.CrossRefGoogle Scholar
  25. [25]
    Biswas, K.; Zhao, L. D.; Kanatzidis, M. G. Tellurium-free thermoelectric: The anisotropic n-type semiconductor Bi2S3. Adv. Energy Mater. 2012, 2, 634–638.CrossRefGoogle Scholar
  26. [26]
    Xiong, P.; Liu, B. R.; Teran, V.; Zhao, Y.; Peng, L. L.; Wang, X.; Yu, G. H. Chemically integrated two-dimensional hybrid zinc manganate/graphene nanosheets with enhanced lithium storage capability. ACS Nano 2014, 8, 8610–8616.CrossRefGoogle Scholar
  27. [27]
    Cao, X. H.; Shi, Y. M.; Shi, W. H.; Rui, X. H.; Yan, Q. Y.; Kong, J.; Zhang, H. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 2013, 9, 3433–3438.CrossRefGoogle Scholar
  28. [28]
    Peng, L. L.; Zhu, Y.; Li, H. S.; Yu, G. H. Chemically integrated inorganic-graphene two-dimensional hybrid materials for flexible energy storage devices. Small 2016, 12, 6183–6199.CrossRefGoogle Scholar
  29. [29]
    Li, L.; Kovalchuk, A.; Tour, J. M. SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res. 2014, 7, 1319–1326.CrossRefGoogle Scholar
  30. [30]
    Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850–1865.CrossRefGoogle Scholar
  31. [31]
    Li, H. S.; Ding, Y.; Ha, H.; Shi, Y.; Peng, L. L.; Zhang, X. G.; Ellison, C. J.; Yu, G. H. An all-stretchable-component sodium-ion full battery. Adv. Mater. 2017, 29, 1700898.CrossRefGoogle Scholar
  32. [32]
    Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.CrossRefGoogle Scholar
  33. [33]
    Pei, L. K.; Jin, Q.; Zhu, Z. Q.; Zhao, Q.; Liang, J.; Chen, J. Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Res. 2015, 8, 184–192.CrossRefGoogle Scholar
  34. [34]
    Liu, X. X.; Chao, D. L.; Su, D. P.; Liu, S. K.; Chen, L.; Chi, C. X.; Lin, J. Y.; Shen, Z. X.; Zhao, J. P.; Mai, L. Q. et al. Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. Nano Energy 2017, 37, 108–117.CrossRefGoogle Scholar
  35. [35]
    Liu, Y.; Yang, Y. Z.; Wang, X. Z.; Dong, Y. F.; Tang, Y. C.; Yu, Z. F.; Zhao, Z. B.; Qiu, J. S. Flexible paper-like free-standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 15484–15491.CrossRefGoogle Scholar
  36. [36]
    Xiong, X. H.; Wang, G. H.; Lin, Y. W.; Wang, Y.; Ou, X.; Zheng, F. H.; Yang, C. H.; Wang, J. H.; Liu, M. L. Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 2016, 10, 10953–10959.CrossRefGoogle Scholar
  37. [37]
    Bi, H.; Chen, I. W.; Lin, T. Q.; Huang, F. Q. A new tubular graphene form of a tetrahedrally connected cellular structure. Adv. Mater. 2015, 27, 5943–5949.CrossRefGoogle Scholar
  38. [38]
    Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.CrossRefGoogle Scholar
  39. [39]
    Wu, S. P.; Ge, R. Y.; Lu, M. J; Xu, R.; Zhang, Z. Graphene-based nano-materials for lithium–sulfur battery and sodium-ion battery. Nano Energy 2015, 15, 379–405.CrossRefGoogle Scholar
  40. [40]
    Liu, H.; Jia, M. Q.; Cao, B.; Chen, R. J.; Lv, X. Y.; Tang, R. J.; Wu, F.; Xu, B. Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability. J. Power Sources 2016, 319, 195–201.CrossRefGoogle Scholar
  41. [41]
    Zhao, Y.; Gao, D. L.; Ni, J. F.; Gao, L. J.; Yang, J.; Li, Y. One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 2014, 7, 765–773.CrossRefGoogle Scholar
  42. [42]
    Zhang, C.; Wang, X.; Liang, Q. F.; Liu, X. Z.; Weng, Q. H.; Liu, J. W.; Yang, Y. J.; Dai, Z. H.; Ding, K. J.; Bando, Y. et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054–2060.CrossRefGoogle Scholar
  43. [43]
    Tian, L. L.; Li, S. B.; Zhang, M. J.; Li, S. K.; Lin, L. P.; Zheng, J. X.; Zhuang, Q. C.; Amine, K.; Pan, F. Cascading boost effect on the capacity of nitrogen-doped graphene sheets for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 26722–26729.CrossRefGoogle Scholar
  44. [44]
    Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.CrossRefGoogle Scholar
  45. [45]
    Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived n-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.CrossRefGoogle Scholar
  46. [46]
    Wang, H. G.; Li, W.; Liu, D. P.; Feng, X. L.; Wang, J.; Yang, X. Y.; Zhang, X. B.; Zhu, Y. J.; Zhang, Y. Flexible electrodes for sodium-ion batteries: Recent progress and perspectives. Adv. Mater. 2017, 29, 1703012.CrossRefGoogle Scholar
  47. [47]
    Ma, J. M.; Liu, Z. F.; Lian, J. B.; Duan, X. C.; Kim, T.; Peng, P.; Liu, X. D.; Chen, Q.; Yao, G.; Zheng, W. J. Ionic liquids-assisted synthesis and electrochemical properties of Bi2S3 nanostructures. CrystEngComm 2011, 13, 3072–3079.CrossRefGoogle Scholar
  48. [48]
    Jung, H.; Park, C. M.; Sohn, H. J. Bismuth sulfide and its carbon nanocomposite for rechargeable lithium-ion batteries. Electrochim. Acta 2011, 56, 2135–2139.CrossRefGoogle Scholar
  49. [49]
    Liu, S. N.; Cai, Z. Y.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Chrysanthemum-like Bi2S3 nanostructures: A promising anode material for lithium-ion batteries and sodium-ion batteries. J. Alloys Compd. 2017, 715, 432–437.CrossRefGoogle Scholar
  50. [50]
    Yang, W. L.; Wang, H.; Liu, T. T.; Gao, L. J. A Bi2S3@CNT nanocomposite as anode material for sodium ion batteries. Mater. Lett. 2016, 167, 102–105.CrossRefGoogle Scholar
  51. [51]
    Xin, S.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 2014, 26, 1261–1265.CrossRefGoogle Scholar
  52. [52]
    Kumar, D.; Rajouria, S. K.; Kuhar, S. B.; Kanchan, D. K. Progress and prospects of sodium-sulfur batteries: A review. Solid State Ionics 2017, 312, 8–16.CrossRefGoogle Scholar
  53. [53]
    Zhao, Y. B.; Manthiram, A. Bi0.94Sb1.06S3 nanorod cluster anodes for sodium-ion batteries: Enhanced reversibility by the synergistic effect of the Bi2S3–Sb2S3 solid solution. Chem. Mater. 2015, 27, 6139–6145.CrossRefGoogle Scholar
  54. [54]
    Zhang, Y.; Fan, L. S.; Wang, P. X.; Yin, Y. Y.; Zhang, X. Y.; Zhang, N. Q.; Sun, K. N. Coupled flower-like Bi2S3 and graphene aerogels for superior sodium storage performance. Nanoscale 2017, 9, 17694–17698.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhouChina
  2. 2.Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia
  3. 3.Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations