Skip to main content
Log in

Dual confinement of polysulfides in boron-doped porous carbon sphere/graphene hybrid for advanced Li-S batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A hybrid structure consisting of boron-doped porous carbon spheres and graphene (BPCS-G) has been designed and synthesized toward solving the polysulfide-shuttle problem, which is the most critical issue of current Li-S batteries. The proposed hybrid structure showing high surface area (870 m2·g−1) and high B-dopant content (6.51 wt.%) simultaneously offers both physical confinement and chemical absorption of polysulfides. On one hand, the abundant-pore structure ensures high sulfur loading, facilitates fast charge transfer, and restrains polysulfide migration during cycling. On the other hand, our density functional theory calculations demonstrate that the B dopant is capable of chemically binding polysulfides. As a consequence of such dual polysulfide confinement, the BPCS-G/S cathode prepared with 70 wt.% sulfur loading presents a high reversible capacity of 1,174 mAh·g−1 at 0.02 C, a high rate capacity of 396 mAh·g−1 at 5 C, and good cyclability over 500 cycles with only 0.05% capacity decay per cycle. The present work provides an efficient and cost-effective platform for the scalable synthesis of high-performance carbon-based materials for advanced Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  Google Scholar 

  2. Manthiram, A.; Fu, Y. Z.; Chung, S.-H.; Zu, C. X.; Su, Y.-S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    Article  Google Scholar 

  3. Goodenough, J. B. Energy storage materials: A perspective. Energy Storage Mater. 2015, 1, 158–161.

    Article  Google Scholar 

  4. Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

    Article  Google Scholar 

  5. Manthiram, A.; Chung, S.-H.; Zu, C. X. Lithium–sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

    Article  Google Scholar 

  6. Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau, F. F. Review on Li-sulfur battery systems: An integral perspective. Adv. Energy Mater. 2015, 5, 1500212.

    Article  Google Scholar 

  7. Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.

    Article  Google Scholar 

  8. Titirici, M.-M.; White, R. J.; Brun, N.; Budarin, V. L.; Su, D. S.; del Monte, F.; Clark, J. H.; MacLachlan, M. J. Sustainable carbon materials. Chem. Soc. Rev. 2015, 44, 250–290.

    Article  Google Scholar 

  9. Liang, J.; Sun, Z.-H.; Li, F.; Cheng, H.-M. Carbon materials for Li–S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2016, 2, 76–106.

    Article  Google Scholar 

  10. Wang, J. L.; He, Y.-S.; Yang, J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 2015, 27, 569–575.

    Article  Google Scholar 

  11. Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X.; Li, Y. Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem. Commun. 2002, 4, 499–502.

    Article  Google Scholar 

  12. Wang, J. L.; Liu, L.; Ling, Z. J.; Yang, J.; Wan, C. R.; Jiang, C. Y. Polymer lithium cells with sulfur composites as cathode materials. Electrochim. Acta 2003, 48, 1861–1867.

    Article  Google Scholar 

  13. Wang, D.-W.; Zeng, Q. C.; Zhou, G. M.; Yin, L. C.; Li, F.; Cheng, H.-M.; Gentle, I. R.; Lu, G. Q. M. Carbon-sulfur composites for Li-S batteries: Status and prospects. J. Mater. Chem. A 2013, 1, 9382–9394.

    Article  Google Scholar 

  14. Evers, S.; Nazar, L. F. New approaches for high energy density lithium–sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.

    Article  Google Scholar 

  15. Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

    Article  Google Scholar 

  16. Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.

    Article  Google Scholar 

  17. Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene–carbon nanotube hybrids from Prussian blue for lithium–sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.

    Article  Google Scholar 

  18. Zhang, C.; Lv, W.; Zhang, W. G.; Zheng, X. Y.; Wu, M.-B.; Wei, W.; Tao, Y.; Li, Z. J.; Yang, Q.-H. Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries. Adv. Energy Mater. 2014, 4, 1301565.

    Article  Google Scholar 

  19. Radovic, L. R.; Karra, M.; Skokova, K.; Thrower, P. A. The role of substitutional boron in carbon oxidation. Carbon 1998, 36, 1841–1854.

    Article  Google Scholar 

  20. Yang, C.-P.; Yin, Y.-X.; Ye, H.; Jiang, K.-C.; Zhang, J.; Guo, Y.-G. Insight into the effect of boron doping on sulfur/ carbon cathode in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2014, 6, 8789–8795.

    Article  Google Scholar 

  21. Xie, Y.; Meng, Z.; Cai, T. W.; Han, W.-Q. Effect of borondoping on the graphene aerogel used as cathode for the lithium–sulfur battery. ACS Appl. Mater. Interfaces 2015, 7, 25202–25210.

    Article  Google Scholar 

  22. Jin, C. B.; Zhang, W. K.; Zhuang, Z. Z.; Wang, J. G.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang, J.; Tao, X. Y. Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 632–640.

    Article  Google Scholar 

  23. Wu, F.; Qian, J.; Wu, W. P.; Ye, Y. S.; Sun, Z. G.; Xu, B.; Yang, X. G.; Xu, Y. H.; Zhang, J. T.; Chen, R. J. Boron-doped microporous nano carbon as cathode material for highperformance Li-S batteries. Nano Res. 2017, 10, 426–436.

    Article  Google Scholar 

  24. Wu, F.; Qian, J.; Chen, R. J.; Ye, Y. S.; Sun, Z. G.; Xing, Y.; Li, L. Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 17033–17041.

    Article  Google Scholar 

  25. Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855.

    Article  Google Scholar 

  26. Kicinski, W.; Szala, M.; Bystrzejewski, M. Sulfur-doped porous carbons: Synthesis and applications. Carbon 2014, 68, 1–32.

    Article  Google Scholar 

  27. Ai, W.; Luo, Z. M.; Jiang, J.; Zhu, J. H.; Du, Z. Z.; Fan, Z. X.; Xie, L. H.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 2014, 26, 6186–6192.

    Article  Google Scholar 

  28. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 09, Revision A.02; Gaussian, Inc: Wallingford, CT, 2016.

    Google Scholar 

  29. Dogru, M.; Bein, T. On the road towards electroactive covalent organic frameworks. Chem. Commun. 2014, 50, 5531–5546.

    Article  Google Scholar 

  30. Yang, L. J.; Jiang, S. J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 50, 7132–7135.

    Article  Google Scholar 

  31. Ai, W.; Jiang, J.; Zhu, J. H.; Fan, Z. X.; Wang, Y. L.; Zhang, H.; Huang, W.; Yu, T. Supramolecular polymerization promoted in situ fabrication of nitrogen-doped porous graphene sheets as anode materials for Li-ion batteries. Adv. Energy Mater. 2015, 5, 1500559.

    Article  Google Scholar 

  32. Qie, L.; Chen, W.-M.; Wang, Z.-H.; Shao, Q.-G.; Li, X.; Yuan, L.-X.; Hu, X.-L.; Zhang, W.-X.; Huang, Y.-H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.

    Article  Google Scholar 

  33. Xin, S.; Gu, L.; Zhao, N.-H.; Yin, Y.-X.; Zhou, L.-J.; Guo, Y.-G.; Wan, L.-J. Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

    Article  Google Scholar 

  34. Zhang, J. H.; Huang, M.; Xi, B. J.; Mi, K.; Yuan, A. H.; Xiong, S. L. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1701330.

    Article  Google Scholar 

  35. Zhang, J.; Yang, C.-P.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium–sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.

    Article  Google Scholar 

  36. Ai, W.; Zhou, W. W.; Du, Z. Z.; Sun, C. C.; Yang, J.; Chen, Y.; Sun, Z. P.; Feng, S.; Zhao, J. F.; Dong, X. C. et al. Toward high energy organic cathodes for Li-ion batteries: A case study of vat dye/graphene composites. Adv. Funct. Mater. 2017, 27, 1603603.

    Article  Google Scholar 

  37. Rehman, S.; Gu, X. X.; Khan, K.; Mahmood, N.; Yang, W. L.; Huang, X. X.; Guo, S. J.; Hou, Y. L. 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1502518.

    Article  Google Scholar 

  38. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  Google Scholar 

  39. Zhao, Y.; Wu, W. L.; Li, J. X.; Xu, Z. C.; Guan, L. H. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.

    Article  Google Scholar 

  40. Ai, W.; Zhou, W. W.; Du, Z. Z.; Chen, Y.; Sun, Z. P.; Wu, C.; Zou, C. J.; Li, C. M.; Huang, W.; Yu, T. Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries. Energy Storage Mater. 2017, 6, 112–118.

    Article  Google Scholar 

  41. Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467.

    Article  Google Scholar 

  42. Ji, L. W.; Rao, M. M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. G. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 2011, 4, 5053–5059.

    Article  Google Scholar 

  43. Jiang, J.; Zhu, J. H.; Ai, W.; Wang, X. L.; Wang, Y. L.; Zou, C. J.; Huang, W.; Yu, T. Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells. Nat. Commun. 2015, 6, 8622.

    Article  Google Scholar 

  44. Ghazi, Z. A.; Zhu, L. Y.; Wang, H.; Naeem, A.; Khattak, A. M.; Liang, B.; Khan, N. A.; Wei, Z. X.; Li, L. S.; Tang, Z. Y. Efficient polysulfide chemisorption in covalent organic frameworks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1601250.

    Article  Google Scholar 

  45. Cai, J. J.; Wu, C.; Yang, S. R.; Zhu, Y.; Shen, P. K.; Zhang, K. L. Templated and catalytic fabrication of N-doped hierarchical porous carbon-carbon nanotube hybrids as host for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 33876–33886.

    Article  Google Scholar 

  46. Wang, H.-F.; Fan, C.-Y.; Li, X.-Y.; Wu, X.-L.; Li, H.-H.; Sun, H.-Z.; Xie, H.-M.; Zhang, J.-P.; Tong, C.-Y. Fabrication of boron-doped porous carbon with termite nest shape via natural macromolecule and borax to obtain lithium-sulfur/sodium-ion batteries with improved rate performance. Electrochim. Acta 2017, 244, 86–95.

    Article  Google Scholar 

  47. Peng, Y. Y.; Zhang, Y. Y.; Huang, J. X.; Wang, Y. H.; Li, H.; Hwang, B. J.; Zhao, J. B. Nitrogen and oxygen dual-doped hollow carbon nanospheres derived from catechol/polyamine as sulfur hosts for advanced lithium sulfur batteries. Carbon 2017, 124, 23–33.

    Article  Google Scholar 

  48. Ji, S. N.; Imtiaz, S.; Sun, D.; Xin, Y.; Li, Q.; Huang, T. Z.; Zhang, Z. L.; Huang, Y. H. Coralline-like N-doped hierarchically porous carbon derived from enteromorpha as a host matrix for lithium-sulfur battery. Chem.—Eur. J. 2017, 23, 18208–18215.

    Article  Google Scholar 

  49. Zhang, Z.; Kong, L.-L.; Liu, S.; Li, G.-R.; Gao, X.-P. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium–sulfur battery. Adv. Energy Mater. 2017, 7, 1602543.

    Article  Google Scholar 

  50. Xiao, D. L.; Lu, C. X.; Chen, C. M.; Yuan, S. X. CeO2- webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2018, 10, 216–222.

    Article  Google Scholar 

  51. Pang, Y.; Wen, Y. P.; Li, W. Y.; Sun, Y. H.; Zhu, T. C.; Wang, Y. G.; Xia, Y. Y. A sulfur-FePO4-C nanocomposite cathode for stable and anti-self-discharge lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 17926–17932.

    Article  Google Scholar 

  52. Rehman, S.; Tang, T. Y.; Ali, Z.; Huang, X. X.; Hou, Y. L. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 2017, 13, 1700087.

    Article  Google Scholar 

  53. Huang, X. K.; Shi, K. Y.; Yang, J.; Mao, G.; Chen, J. H. MnO2-GO double-shelled sulfur (S@MnO2@GO) as a cathode for Li-S batteries with improved rate capability and cyclic performance. J. Power Sources 2017, 356, 72–79.

    Article  Google Scholar 

Download references

Acknowledgments

T. Y. acknowledges the supports by MOE Tier 1 (Nos. RG100/15, RG178/15 and RG22/16). W. H. thanks the supports by the National Basic Research Program of China-Fundamental Studies of Perovskite Solar Cells (No. 2015CB932200), Natural Science Foundation of Jiangsu Province (No. BM2012010), Priority Academic Program Development of Jiangsu Higher Education Institutions (No. YX03001), Ministry of Education of China (No. IRT1148), Synergetic Innovation Center for Organic Electronics and Information Displays, and the National Natural Science Foundation of China (Nos. 61136003 and 51173081). J. W. L. thanks the supports from the National Natural Science Foundation of China (No. 21603104). J. F. Z. thanks the supports from the National Natural Science Foundation of China (No. 21502091), Natural Science Foundation of Jiangsu Province (Nos. BK20130912 and 14KJB430017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Huang or Ting Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, W., Li, J., Du, Z. et al. Dual confinement of polysulfides in boron-doped porous carbon sphere/graphene hybrid for advanced Li-S batteries. Nano Res. 11, 4562–4573 (2018). https://doi.org/10.1007/s12274-018-2036-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2036-6

Keywords

Navigation