Nano Research

, Volume 11, Issue 8, pp 4390–4400 | Cite as

Soft and transient magnesium plasmonics for environmental and biomedical sensing

  • Ruomu Li
  • Suxia Xie
  • Labao Zhang
  • Liqiang Li
  • Deying Kong
  • Qiang Wang
  • Run Xin
  • Xing Sheng
  • Lan Yin
  • Cunjiang Yu
  • Zongfu Yu
  • Xinran Wang
  • Li Gao
Research Article


Due to its controlled reaction with water and biofluids, Mg as a dissolvable conductor has enabled the development of many transient electronic devices. In addition, Mg is a novel plasmonic material with high extinction efficiency, but its transientoptical properties have not been explored thoroughly. In this study, for the first time, we exploit the transient and tunable plasmonic properties of Mg in environmental and biomedical sensor applications. We used soft nanoimprint lithography to fabricate flexible and large-area Mg plasmonic structures that can be applied on the human skin. Their resonance (or color) can be tuned in the visible range by gradual Mg dissolution in a water fluid or vapor-rich environment; these structures can be easily implemented as passive optical sensors without the need for complex electronic circuits or a power supply. We demonstrate the applications of our optical sensors in the accurate monitoring of environmental humidity and physiological detection of sweat loss on the human skin during exercise. Our devices could be used as decomposable/resorbable optical sensors and can help minimize long-term health effects and environmental risks associated with consumer device waste, which will lead to many new possibilities in transient photonic device applications.


plasmonics transient flexible tunable sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author acknowledges support from the Natural Science Foundation of Jiangsu Province (No. BK20150790), the National Natural Science Foundation of China (Nos. 11604151, 61734003, and 61521001), the Fundamental Research Funds for the Central Universities (No. 30917015103).

Supplementary material

12274_2018_2028_MOESM1_ESM.pdf (845 kb)
Soft and transient magnesium plasmonics for environmentaland biomedical sensing


  1. [1]
    Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.CrossRefGoogle Scholar
  2. [2]
    Yao, J. M.; Le, A.-P.; Gray, S. K.; Moore, J. S.; Rogers, J. A.; Nuzzo, R. G. Functional nanostructured plasmonic materials. Adv. Mater. 2010, 22, 1102–1110.CrossRefGoogle Scholar
  3. [3]
    Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348.CrossRefGoogle Scholar
  4. [4]
    Valsecchi, C.; Brolo, A. G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 2013, 29, 5638–5649.CrossRefGoogle Scholar
  5. [5]
    Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.CrossRefGoogle Scholar
  6. [6]
    Szunerits, S.; Boukherroub, R. Sensing using localised surface plasmon resonance sensors. Chem. Commun. 2012, 48, 8999–9010.CrossRefGoogle Scholar
  7. [7]
    Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294.CrossRefGoogle Scholar
  8. [8]
    MacDonald, K. F.; Zheludev, N. I. Active plasmonics: Current status. Laser Photonics Rev. 2010, 4, 562–567.CrossRefGoogle Scholar
  9. [9]
    Sun, Y. H.; Jiang, L.; Zhong, L. B.; Jiang, Y. Y.; Chen, X. D. Towards active plasmonic response devices. Nano Res. 2015, 8, 406–417.CrossRefGoogle Scholar
  10. [10]
    Shir, D.; Ballard, Z. S.; Ozcan, A. Flexible plasmonic sensors. IEEE J. Sel. Top. Quant. Electron. 2016, 22, 4600509.CrossRefGoogle Scholar
  11. [11]
    Liu, X. Y.; Wang, X. Q.; Zha, L. S.; Lin, D. L.; Yang, J. M.; Zhou, J. F.; Zhang, L. Temperature- and pH-tunable plasmonic properties and SERS efficiency of the silver nanoparticles within the dual stimuli-responsive microgels. J. Mater. Chem. C 2014, 2, 7326–7335.CrossRefGoogle Scholar
  12. [12]
    Zhu, X. L.; Shi, L.; Liu, X. H.; Zi, J.; Wang, Z. L. A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate. Nano Res. 2010, 3, 807–812.CrossRefGoogle Scholar
  13. [13]
    Wu, H. X.; Wang, P.; He, H. L.; Jin, Y. D. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135–144.CrossRefGoogle Scholar
  14. [14]
    Aksu, S.; Huang, M.; Artar, A.; Yanik, A. A.; Selvarasah, S.; Dokmeci, M. R.; Altug, H. Flexible plasmonics on unconventional and nonplanar substrates. Adv. Mater. 2011, 23, 4422–4430.CrossRefGoogle Scholar
  15. [15]
    Vazquez-Mena, O.; Sannomiya, T.; Tosun, M.; Villanueva, L. G.; Savu, V.; Voros, J.; Brugger, J. High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks. ACS Nano 2012, 6, 5474–5481.CrossRefGoogle Scholar
  16. [16]
    Gao, L.; Zhang, Y. H.; Zhang, H.; Doshay, S.; Xie, X.; Luo, H. Y.; Shah, D.; Shi, Y.; Xu, S. Y.; Fang, H. et al. Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures. ACS Nano 2015, 9, 5968–5975.CrossRefGoogle Scholar
  17. [17]
    Emani, N. K.; Chung, T.-F.; Ni, X. J.; Kildishev, A. V.; Chen, Y. P.; Boltasseva, A. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 2012, 12, 5202–5206.CrossRefGoogle Scholar
  18. [18]
    Kim, J.; Son, H.; Cho, D. J.; Geng, B. S.; Regan, W.; Shi, S. F.; Kim, K.; Zettl, A.; Shen, Y.-R.; Wang, F. Electrical control of optical plasmon resonance with graphene. Nano Lett. 2012, 12, 5598–5602.CrossRefGoogle Scholar
  19. [19]
    Lee, J.; Jung, S.; Chen, P.-Y.; Lu, F.; Demmerle, F.; Boehm, G.; Amann, M.-C.; Alù, A.; Belkin, M. A. Ultrafast electrically tunable polaritonic metasurfaces. Adv. Opt. Mater. 2014, 2, 1057–1063.CrossRefGoogle Scholar
  20. [20]
    Sanz, J. M.; Ortiz, D.; Alcaraz de la Osa, R.; Saiz, J. M.; Gonzaĺez, F.; Brown, A. S.; Losurdo, M.; Everitt, H. O.; Moreno, F. UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects. J. Phys. Chem. C 2013, 117, 19606–19615.CrossRefGoogle Scholar
  21. [21]
    Appusamy, K.; Blair, S.; Nahata, A.; Guruswamy, S. Low-loss magnesium films for plasmonics. Mater. Sci. Eng. B 2014, 181, 77–85.CrossRefGoogle Scholar
  22. [22]
    Appusamy, K.; Swartz, M.; Blair, S.; Nahata, A.; Shumaker-Parry, J. S.; Guruswamy, S. Influence of aluminum content on plasmonic behavior of Mg-Al alloy thin films. Opt. Mater. Express 2016, 6, 3180–3192.CrossRefGoogle Scholar
  23. [23]
    Wu, P. C.; Kim, T.-H.; Suvorova, A.; Giangregorio, M.; Saunders, M.; Bruno, G.; Brown, A. S.; Losurdo, M. GaMg alloy nanoparticles for broadly tunable plasmonics. Small 2011, 7, 751–756.CrossRefGoogle Scholar
  24. [24]
    Wu, P. C; Losurdo, M.; Kim, T.-H.; Garcia-Cueto, B.; Moreno, F.; Bruno, G.; Brown, A. S. Ga-Mg core-shell nanosystem for a novel full color plasmonics. J. Phys. Chem. C 2011, 115, 13571–13576.CrossRefGoogle Scholar
  25. [25]
    Sterl, F.; Strohfeldt, N.; Walter, R.; Griessen, R.; Tittl, A.; Giessen, H. Magnesium as novel material for active plasmonics in the visible wavelength range. Nano Lett. 2015, 15, 7949–7955.CrossRefGoogle Scholar
  26. [26]
    Jeong, H.-H.; Marka, A. G.; Fischer, P. Magnesium plasmonics for UV applications and chiral sensing. Chem. Commun. 2016, 52, 12179–12182.CrossRefGoogle Scholar
  27. [27]
    Wang, Y. S.; Peterson, E. M.; Harris, J. M.; Appusamy, K.; Guruswamy, S.; Blair, S. Magnesium as a novel UV plasmonic material for fluorescence decay rate engineering in free solution. J. Phys. Chem. C 2017, 121, 11650–11657.CrossRefGoogle Scholar
  28. [28]
    Hwang, S.-W.; Tao, H.; Kim, D.-H.; Cheng, H.; Song, J.-K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y.-S. et al. A physically transient form of silicon electronics. Science 2012, 337, 1640–1644.CrossRefGoogle Scholar
  29. [29]
    Yin, L.; Cheng, H. Y.; Mao, S. M.; Haasch, R.; Liu, Y. H.; Xie, X.; Hwang, S.-W.; Jain, H.; Kang, S.-K.; Su, Y. W. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 2014, 24, 645–658.CrossRefGoogle Scholar
  30. [30]
    Yin, L.; Huang, X.; Xu, H. X.; Zhang, Y. F.; Lam, J.; Cheng, J. J.; Rogers, J. A. Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv. Mater. 2014, 26, 3879–3884.CrossRefGoogle Scholar
  31. [31]
    Hwang, S.-W.; Park, G.; Cheng, H. Y.; Song, J.-K.; Kang, S.-K.; Yin, L.; Kim, J.-H.; Omenetto, F. G.; Huang, Y.; Lee, K.-M. et al. 25th anniversary article: Materials for high-performance biodegradable semiconductor devices. Adv. Mater. 2014, 26, 1992–2000.CrossRefGoogle Scholar
  32. [32]
    Stewart, M. E.; Mack, N. H.; Malyarchuk, V.; Soares, J. A. N. T.; Lee, T.-W.; Gray, S. K.; Nuzzo, R. G.; Rogers, J. A. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc. Natl. Acad. Sci. USA 2006, 103, 17143–17148.CrossRefGoogle Scholar
  33. [33]
    Baca, A. J.; Truong, T. T.; Cambrea, L. R.; Montgomery, J. M.; Gray, S. K.; Abdula, D.; Banks, T. R.; Yao, J. M.; Nuzzo, R. G.; Rogers, J. A. Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering. Appl. Phys. Lett. 2009, 94, 243109.CrossRefGoogle Scholar
  34. [34]
    Truong, T. T.; Maria, J.; Yao, J.; Stewart, M. E.; Lee, T.-W.; Gray, S. K.; Nuzzo, R. G.; Rogers, J. A. Nanopost plasmonic crystals. Nanotechnology 2009, 20, 434011.CrossRefGoogle Scholar
  35. [35]
    Yao, J. M.; Le, A.-P.; Schulmerich, M. V.; Maria, J.; Lee, T.-W.; Gray, S. K.; Bhargava, R.; Rogers, J. A.; Nuzzo, R. G. Soft embossing of nanoscale optical and plasmonic structures in glass. ACS Nano 2011, 5, 5763–5774.CrossRefGoogle Scholar
  36. [36]
    Le, A.-P.; Kang, S.; Thompson, L. B.; Rubakhin, S. S.; Sweedler, J. V.; Rogers, J. A.; Nuzzo, R. G. Quantitative reflection imaging of fixed Aplysia californica pedal ganglion neurons on nanostructured plasmonic crystals. J. Phys. Chem. B 2013, 117, 13069–13081.CrossRefGoogle Scholar
  37. [37]
    Chanda, D.; Shigeta, K.; Gupta, S.; Cain, T.; Carlson, A.; Mihi, A.; Baca, A. J.; Bogart, G. R.; Braun, P.; Rogers, J. A. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat. Nanotechnol. 2011, 6, 402–407.CrossRefGoogle Scholar
  38. [38]
    Gao, L.; Shigeta, K.; Vazquez-Guardado, A.; Progler, C. J.; Bogart, G. R.; Rogers, J. A.; Chanda, D. Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands. ACS Nano 2014, 8, 5535–5542.CrossRefGoogle Scholar
  39. [39]
    Gao, L.; Kim, Y.; Vazquez-Guardado, A.; Shigeta, K.; Hartanto, S.; Franklin, D.; Progler, C. J.; Bogart, G. R.; Rogers, J. A.; Chanda, D. Materials selections and growth conditions for large-area, multilayered, visible negative index metamaterials formed by nanotransfer printing. Adv. Opt. Mater. 2014, 2, 256–261.CrossRefGoogle Scholar
  40. [40]
    Li, R.; Cheng, H. Y.; Su, Y. W.; Hwang, S.-W.; Yin, L.; Tao, H.; Brenckle, M. A.; Kim, D.-H.; Omenetto, F. G.; Rogers, J. A. et al. An analytical model of reactive diffusion for transient electronics. Adv. Funct. Mater. 2013, 23, 3106–3114.CrossRefGoogle Scholar
  41. [41]
    Mena-Bravo, A.; Luque de Castro, M. D. Sweat: A sample with limited present applications and promising future in metabolomics. J. Pharmaceut. Biomed. 2014, 90, 139–147.CrossRefGoogle Scholar
  42. [42]
    Jadoon, S.; Karim, S.; Akram, M. R.; Khan, A. K.; Zia, M. A.; Siddiqi, A. R.; Murtaza, G. Recent developments in sweat analysis and its applications. Int. J. Anal. Chem. 2015, 2015, 164974.CrossRefGoogle Scholar
  43. [43]
    Heikenfeld, J. Non-invasive analyte access and sensing through eccrine sweat: Challenges and outlook circa 2016. Electroanalysis 2016, 28, 1242–1249.CrossRefGoogle Scholar
  44. [44]
    Salvo, P.; Di Francesco, F.; Costanzo, D.; Ferrari, C.; Trivella, M. G.; De Rossi, D. A wearable sensor for measuring sweat rate. IEEE Sens. J. 2010, 10, 1557–1558.CrossRefGoogle Scholar
  45. [45]
    Huang, X.; Liu, Y. H.; Chen, K. L.; Shin, W.-J.; Lu, C.-J.; Kong, G.-W.; Patnaik, D.; Lee, S.-H.; Cortes, J. F.; Rogers, J. A. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 2014, 10, 3083–3090.CrossRefGoogle Scholar
  46. [46]
    Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.CrossRefGoogle Scholar
  47. [47]
    Choi, J.; Kang, D.; Han, S.; Kim, S. B.; Rogers, J. A. Thin, soft, skin-mounted micro fuidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthcare Mater. 2017, 6, 1601355.CrossRefGoogle Scholar
  48. [48]
    Koh, A.; Kang, D.; Xue, Y. G.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 366ra165.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ruomu Li
    • 1
  • Suxia Xie
    • 2
  • Labao Zhang
    • 3
  • Liqiang Li
    • 4
  • Deying Kong
    • 5
  • Qiang Wang
    • 6
  • Run Xin
    • 3
  • Xing Sheng
    • 6
  • Lan Yin
    • 5
  • Cunjiang Yu
    • 7
  • Zongfu Yu
    • 8
  • Xinran Wang
    • 3
  • Li Gao
    • 1
  1. 1.School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Physics and ElectronicsHunan University of Science and TechnologyXiangtanChina
  3. 3.School of Electronic Science and EngineeringNanjing UniversityNanjingChina
  4. 4.Advanced Materials DivisionSuzhou Institute of Nano-Tech and Nano-BionicsSuzhouChina
  5. 5.School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  6. 6.Department of Electronic EngineeringTsinghua UniversityBeijingChina
  7. 7.Department of Mechanical EngineeringUniversity of HoustonHoustonUSA
  8. 8.School of Electrical and Computer EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations