Nano Research

, Volume 11, Issue 8, pp 4356–4367 | Cite as

Large-area and highly uniform carbon nanotube film for high-performance thin film transistors

  • Guodong Dong
  • Jie Zhao
  • Lijun Shen
  • Jiye Xia
  • Hu Meng
  • Wenhuan Yu
  • Qi Huang
  • Hua Han
  • Xuelei Liang
  • Lianmao Peng
Research Article


Carbon nanotube thin film transistors (CNT-TFTs) are a potential TFT technology for future high-performance macroelectronics. Practical application of CNT-TFTs requires the production of large-area, highly uniform, density-controllable, repeatable, and high-throughput CNT thin films. In this study, CNT films were fabricated on 4-inch Si wafers and 2.5th generation (G2.5) backplane glasses (370 mm × 470 mm) by dip coating using a chloroform-dispersed high-purity semiconducting CNT solution. The CNT density was controlled by the solution concentration and coating times, but was almost independent of the substrate lifting speed (1–450 mm·min−1), which enables high-throughput CNT thin film production. We developed an image processing software to efficiently characterize the density and uniformity of the large-area CNT films. Using the software, we confirmed that the CNT films are highly uniform with coefficients of variance (CV) < 10% on 4-inch Si wafers and ∼ 13.8% on G2.5 backplane glasses. High-performance CNT-TFTs with a mobility of 45–55 cm2·V−1·s−1 were obtained using the fabricated CNT films with a high-performance uniformity (CV ≈ 11%–13%) on a 4-inch wafer. To our knowledge, this is the first fabrication and detailed characterization of such large-area, high-purity, semiconducting CNT films for TFT applications, which is a significant step toward manufacturing CNT-TFTs.


carbon nanotube thin film large area uniform transistor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program (No. 2016YFA0201902), the National Natural Science Foundation of China (No. 61621061), Beijing Municipal Science & Technology Commission (Nos. Z171100002017001 and Z161100000216146), and Chinese Academy of Science (No. YZ201671). The authors thank Dr. Wei He from Focus e-Beam Technology Co., Ltd. for helpful discussion on high throughput SEM technology. We also thank Prof. Shimin Hou and Dr. Hao Wang for valuable discussion.

Supplementary material

12274_2018_2025_MOESM1_ESM.mp4 (16.7 mb)
Supplementary material, approximately 16.6 MB.
12274_2018_2025_MOESM2_ESM.mp4 (20.4 mb)
Supplementary material, approximately 20.4 MB.
12274_2018_2025_MOESM3_ESM.pdf (3.5 mb)
Large-area and highly uniform carbon nanotube film for high-performance thin film transistors


  1. [1]
    Franklin, A. D. Nanomaterials in transistors: From high-perfor-mance to thin-film applications. Science 2015, 349, aab2750.CrossRefGoogle Scholar
  2. [2]
    Kuo, Y. Thin film transistor technology—Past, present, and future. Electrochem. Soc. Interface 2013, 22, 55–61.CrossRefGoogle Scholar
  3. [3]
    Liang, X. L.; Xia, J. Y.; Dong, G. D.; Tian, B. Y.; Peng, L. M. Carbon nanotube thin film transistors for flat panel display application. Top. Curr. Chem. 2016, 374, 80.CrossRefGoogle Scholar
  4. [4]
    Xia, J. Y.; Dong, G. D.; Tian, B. Y.; Yan, Q. P.; Zhang, H.; Liang, X. L.; Peng, L. M. Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors. Nanoscale 2016, 8, 9988–9996.CrossRefGoogle Scholar
  5. [5]
    Brady, G. J.; Joo, Y.; Wu, M. Y.; Shea, M. J.; Gopalan, P.; Arnold, M. S. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 2014, 8, 11614–11621.CrossRefGoogle Scholar
  6. [6]
    Derenskyi, V.; Gomulya, W.; Rios, J. M. S.; Fritsch, M.; Fröhlich, N.; Jung, S.; Allard, S.; Bisri, S. Z.; Gordiichuk, P.; Herrmann, A. et al. Carbon nanotube network ambipolar field- effect transistors with 108 on/off ratio. Adv. Mater. 2014, 26, 5969–5975.CrossRefGoogle Scholar
  7. [7]
    Liang, Y. R.; Xia, J. Y.; Liang, X. L. Short channel carbon nanotube thin film transistors with high on/off ratio fabricated by two-step fringing field dielectrophoresis. Sci. Bull. 2016, 61, 794–800.CrossRefGoogle Scholar
  8. [8]
    Chen, P. C.; Fu, Y.; Aminirad, R.; Wang, C.; Zhang, J. L.; Wang, K.; Galatsis, K.; Zhou, C. W. Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett. 2011, 11, 5301–5308.CrossRefGoogle Scholar
  9. [9]
    Takahashi, T.; Yu, Z. B.; Chen, K.; Kiriya, D.; Wang, C.; Takei, K.; Shiraki, H.; Chen, T.; Ma, B. W.; Javey, A. Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett. 2013, 13, 5425–5430.CrossRefGoogle Scholar
  10. [10]
    Lee, W.; Koo, H.; Sun, J. F.; Noh, J.; Kwon, K.-S.; Yeom, C.; Choi, Y.; Chen, K.; Javey, A.; Cho, G. A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors. Sci. Rep. 2015, 5, 17707.CrossRefGoogle Scholar
  11. [11]
    Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.CrossRefGoogle Scholar
  12. [12]
    Zou, J. P.; Zhang, K.; Li, J. Q.; Zhao, Y. B.; Wang, Y. L.; Pillai, S. K. R.; Volkan Demir, H.; Sun, X. W.; Chan-Park, M. B.; Zhang, Q. Carbon nanotube driver circuit for 6 × 6 organic light emitting diode display. Sci. Rep. 2015, 5, 11755.CrossRefGoogle Scholar
  13. [13]
    Zhang, J. L.; Fu, Y.; Wang, C.; Chen, P. C.; Liu, Z. W.; Wei, W.; Wu, C.; Thompson, M. E.; Zhou, C. W. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett. 2011, 11, 4852–4858.CrossRefGoogle Scholar
  14. [14]
    Cong, S.; Cao, Y.; Fang, X.; Wang, Y. F.; Liu, Q. Z.; Gui, H.; Shen, C. F.; Cao, X.; Kim, E. S.; Zhou, C. W. Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays. ACS Nano 2016, 10, 10068–10074.CrossRefGoogle Scholar
  15. [15]
    Xu, W. Y.; Zhao, J. W.; Qian, L.; Han, X. Y.; Wu, L. Z.; Wu, W. C.; Song, M. S.; Zhou, L.; Su, W. M.; Wang, C. et al. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED). Nanoscale 2014, 6, 1589–1595.CrossRefGoogle Scholar
  16. [16]
    Li, Z.; Ding, J. F.; Lefebvre, J.; Malenfant, P. R. L. Surface effects on network formation of conjugated polymer wrapped semiconducting single walled carbon nanotubes and thin film transistor performance. Organic Electronics 2015, 26, 15–19.CrossRefGoogle Scholar
  17. [17]
    Wang, C.; Zhang, J. L.; Ryu, K. M.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.CrossRefGoogle Scholar
  18. [18]
    Tian, B. Y.; Liang, X. L.; Yan, Q. P.; Zhang, H.; Xia, J. Y.; Dong, G. D.; Peng, L. M.; Xie, S. S. Wafer scale fabrication of carbon nanotube thin film transistors with high yield. J. Appl. Phys. 2016, 120, 034501.CrossRefGoogle Scholar
  19. [19]
    Liyanage, L. S.; Lee, H.; Patil, N.; Park, S.; Mitra, S.; Bao, Z.; Wong, H. S. Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks. ACS Nano 2012, 6, 451–458.CrossRefGoogle Scholar
  20. [20]
    Steger, C. An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 113–125.CrossRefGoogle Scholar
  21. [21]
    Lindeberg, T. Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vision 1998, 30, 117–156.CrossRefGoogle Scholar
  22. [22]
    Lam, L.; Lee, S. W.; Suen, C. Y. Thinning methodologies—A comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 869–885.CrossRefGoogle Scholar
  23. [23]
    Peng, L. M.; Wang, S.; Liang, X. L.; Zhang, Z. Y.; Yao, K.; Hu, Y. F.; Gao, M.; Chen, Q. Scanning electron micrscopy imaging of single-walled carbon nanotubes and devices. J. Chin. Electr. Microsc. Soc. 2007, 26, 395–399. (in Chinese)Google Scholar
  24. [24]
    Tang, X. N.; Yan, X. Dip-coating for fibrous materials: Mechanism, methods and applications. J. Sol-Gel Sci. Technol. 2017, 81, 378–404.CrossRefGoogle Scholar
  25. [25]
    Brinker, C. J. Dip coating. In Chemical Solution Deposition of Functional Oxide Thin Films. Schneller, T.; Waser, R.; Kosec, M.; Payne, D., Eds.; Springer: Vienna, 2013; pp 233–261.CrossRefGoogle Scholar
  26. [26]
    Ng, M. H. A.; Hartadi, L. T.; Tan, H. W.; Poa, C. H. P. Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates. Nanotechnology 2008, 19, 205703.CrossRefGoogle Scholar
  27. [27]
    Song, Y. I.; Kim, G. Y.; Choi, H. K.; Jeong, H. J.; Kim, K. K.; Yang, C. M.; Lim, S. C.; An, K. H.; Jung, K. T.; Lee, Y. H. Fabrication of carbon nanotube field emitters using a dip-coating method. Chem. Vap. Deposition 2006, 12, 375–379.CrossRefGoogle Scholar
  28. [28]
    Jang, E. Y.; Kang, T. J.; Im, H. W.; Kim, D. W.; Kim, Y. H. Single-walled carbon-nanotube networks on large-area glass substrate by the dip-coating method. Small 2008, 4, 2255–2261.CrossRefGoogle Scholar
  29. [29]
    Alam, M. A.; Pimparkar, N.; Kumar, S.; Murthy, J. Theory of nanocomposite network transistors for macroelectronics applications. MRS Bull. 2006, 31, 466–470.CrossRefGoogle Scholar
  30. [30]
    Grosso, D. How to exploit the full potential of the dip-coating process to better control film formation. J. Mater. Chem. 2011, 21, 17033–17038.CrossRefGoogle Scholar
  31. [31]
    Faustini, M.; Louis, B.; Albouy, P. A.; Kuemmel, M.; Grosso, D. Preparation of sol–gel films by dip-coating in extreme conditions. J. Phys. Chem. C 2010, 114, 7637–7645.CrossRefGoogle Scholar
  32. [32]
    Mirri, F.; Ma, A. W. K.; Hsu, T. T.; Behabtu, N.; Eichmann, S. L.; Young, C. C.; Tsentalovich, D. E.; Pasquali, M. High-perfor-mance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 2012, 6, 9737–9744.CrossRefGoogle Scholar
  33. [33]
    Huang, J. X.; Fan, R.; Connor, S.; Yang, P. D. One-step patterning of aligned nanowire arrays by programmed dip coating. Angew. Chem., Int. Ed. 2007, 46, 2414–2417.CrossRefGoogle Scholar
  34. [34]
    Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 2014, 30, 3460–3466.CrossRefGoogle Scholar
  35. [35]
    Kim, J.; Hong, D.; Lee, H.; Shin, Y.; Park, S.; Khang, Y.; Lee, M.; Hong, S. Large scale assembly of pristine semiconducting carbon nanotube network-based devices exhibiting intrinsic characteristics. J. Phys. Chem. C 2013, 117, 19721–19728.Google Scholar
  36. [36]
    Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516.CrossRefGoogle Scholar
  37. [37]
    Chen, B. Y.; Zhang, P. P.; Ding, L.; Han, J.; Qiu, S.; Li, Q. W.; Zhang, Z. Y.; Peng, L.-M. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 2016, 16, 5120–5128.CrossRefGoogle Scholar
  38. [38]
    Yang, Y. J.; Ding, L.; Han, J.; Zhang, Z. Y.; Peng, L. M. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 2017, 11, 4124–4132.CrossRefGoogle Scholar
  39. [39]
    Chai, Y.; Hazeghi, A.; Takei, K.; Chen, H. Y.; Chan, P. C. H.; Javey, A.; Wong, H. S. P. Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans. Electron Dev. 2012, 59, 12–19.CrossRefGoogle Scholar
  40. [40]
    Kumar, S.; Murthy, J. Y.; Alam, M. A. Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 2005, 95, 066802.CrossRefGoogle Scholar
  41. [41]
    Xia, J. Y.; Dong, G. D.; Tian, B. Y.; Yan, Q. P.; Han, J.; Qiu, S.; Li, Q. W.; Liang, X. L.; Peng, L. M. Contact resistance effects in carbon nanotube thin film transistors. Acta Phys. -Chim. Sin. 2016, 32, 1029–1035.Google Scholar
  42. [42]
    Wang, C.; Chien, J. C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 2012, 12, 1527–1533.CrossRefGoogle Scholar
  43. [43]
    Cheng, X.; Lee, S. S.; Chaji, R.; Nathan, A. Device-circuit interactions and impact on TFT circuit-system design. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 71–80.CrossRefGoogle Scholar
  44. [44]
    Focus-Beam Technology Homepage. (accessed Nov 8, 2017).Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guodong Dong
    • 1
  • Jie Zhao
    • 1
  • Lijun Shen
    • 2
    • 3
  • Jiye Xia
    • 1
  • Hu Meng
    • 4
  • Wenhuan Yu
    • 2
    • 3
  • Qi Huang
    • 1
  • Hua Han
    • 2
    • 3
  • Xuelei Liang
    • 1
  • Lianmao Peng
    • 1
  1. 1.Key Laboratory for the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijingChina
  2. 2.Institute of AutomationChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.BOE Technology Group Co., Ltd.BeijingChina

Personalised recommendations