Abstract
Copper oxide nanowires with varying oxidation states are prepared and their activity for water oxidation is studied. The nanowires with a CuO phase are found to be the most active, and their degree of crystallinity is important in achieving efficient water oxidation. For the crystalline CuO nanowires in a weakly basic Na2CO3 electrolyte, a Tafel slope of 41 mV/decade, an overpotential of approximately 500 mV at ~ 10 mA/cm2 (without compensation for the solution resistance), and a faradaic efficiency of nearly 100% are obtained. This electrode maintains a stable current for over 15 h. The low overpotential of 500 mV at 10 mA/cm2, small Tafel slope, long-term stability, and low cost make CuO one of the most promising catalysts for water oxidation. Moreover, the evolution of the CuO nanowire morphology over time is studied by electron microscopy, revealing that the diffusion of Cu ions from the interior of the nanowires to their surface causes the aggregation of individual nanowires over time. However, despite this aggregation, the current density remains nearly constant, because the total electrochemically active surface area of CuO does not change.
References
Yu, J.; Si, Z. C.; Chen, L.; Wu, X. D.; Weng, D. Selective catalytic reduction of NOx by ammonia over phosphate-con-taining Ce0.75Zr0.25O2 solids. Appl. Catal. B: Environ. 2015, 163, 223–232.
Mamaca, N.; Mayousse, E.; Arrii-Clacens, S.; Napporn, T. W.; Servat, K.; Guillet, N.; Kokoh, K. B. Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction. Appl. Catal. B: Environ. 2012, 111–112, 376–380.
da Silva, G. C.; Perini, N.; Ticianelli, E. A. Effect of temperature on the activities and stabilities of hydrothermally prepared IrOx nanocatalyst layers for the oxygen evolution reaction. Appl. Catal. B: Environ. 2017, 218, 287–297.
Heo, I.; Wiebenga, M. H.; Gaudet, J. R.; Nam, I. S.; Li, W.; Kim, C. H. Ultra low temperature CO and HC oxidation over Cu-based mixed oxides for future automotive applications. Appl. Catal. B: Environ. 2014, 160–161, 365–373.
Ng, J. W. D.; García-Melchor, M.; Bajdich, M.; Chakthranont, P.; Kirk, C.; Vojvodic, A.; Jaramillo, T. F. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 2016, 1, 16053.
Zhong, M.; Hisatomi, T.; Kuang, Y. B.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q. X.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M. et al. Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 2015, 137, 5053–5060.
Cao, Q.; Yu, J.; Yuan, K. P.; Zhong, M.; Delaunay, J. J. Facile and large-area preparation of porous Ag3PO4 photoanodes for enhanced photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 2017, 9, 19507–19512.
McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.
Feng, J. X.; Ye, S. H.; Xu, H.; Tong, Y. X.; Li, G. R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electroca-talysts for the oxygen evolution reaction. Adv. Mater. 2016, 28, 4698–4703.
Du, J. L.; Chen, Z. F.; Ye, S. R.; Wiley, B. J.; Meyer, T. J. Copper as a robust and transparent electrocatalyst for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 2073–2080.
Zhong, M.; Hisatomi, T.; Sasaki, Y.; Suzuki, S.; Teshima, K.; Nakabayashi, M.; Shibata, N.; Nishiyama, H.; Katayama, M.; Yamada, T. et al. Highly active GaN-stabilized Ta3N5 thin-film photoanode for solar water oxidation. Angew. Chem., Int. Ed. 2017, 56, 4739–4743.
Peng, X.; Wang, L.; Hu, L. S.; Li, Y.; Gao, B.; Song, H.; Huang, C.; Zhang, X. M.; Fu, J. J.; Huo, K. F. et al. In situ segregation of cobalt nanoparticles on VN nanosheets via nitriding of Co2V2O7 nanosheets as efficient oxygen evolution reaction electrocatalysts. Nano Energy 2017, 34, 1–7.
Chen, H. X.; Zhang, Q. B.; Han, X.; Cai, J. J.; Liu, M. L.; Yang, Y.; Zhang, K. L. 3D hierarchically porous zinc–nickel–cobalt oxide nanosheets grown on Ni foam as binder-free electrodes for electrochemical energy storage. J. Mater. Chem. A 2015, 3, 24022–24032.
Lu, X. F.; Liao, P. Q.; Wang, J. W.; Wu, J. X.; Chen, X. W.; He, C. T.; Zhang, J. P.; Li, G. R.; Chen, X. M. An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2016, 138, 8336–8339.
Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 3694–3698.
Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.
Wang, H. Y.; Hsu, Y. Y.; Chen, R.; Chan, T. S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction. Adv. Mater. 2015, 5, 1500091.
Li, S. W.; Wang, Y. C.; Peng, S. J.; Zhang, L. J.; Al-Enizi, A. M.; Zhang, H.; Sun, X. H.; Zheng, G. F. Co–Ni-based nanotubes/ nanosheets as efficient water splitting electrocatalysts. Adv. Energy Mater. 2016, 6, 1501661.
Zhan, T. R.; Liu, X. L.; Lu, S. S.; Hou, W. G. Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions. Appl. Catal. B: Environ. 2017, 205, 551–558.
Li, L. L.; Zhang, L.; Ma, K. L.; Zou, W. X.; Cao, Y.; Xiong, Y.; Tang, C. J.; Dong, L. Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3. Appl. Catal. B: Environ. 2017, 207, 366–375.
Xu, W.; Lan, R.; Du, D. W.; Humphreys, J.; Walker, M.; Wu, Z. C.; Wang, H. T.; Tao, S. W. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. Appl. Catal. B: Environ. 2017, 218, 470–479.
Berenguer, R.; La Rosa-Toro, A.; Quijada, C.; Morallón, E.Electrocatalytic oxidation of cyanide on copper-doped cobalt oxide electrodes. Appl. Catal. B: Environ. 2017, 207, 286–296.
Cao, Q.; Che, R. C.; Chen, N. Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity. Appl. Catal. B: Environ. 2015, 162, 187–195.
Ye, Z.; Giraudon, J. M.; Nuns, N.; Simon, P.; De Geyter, N.; Morent, R.; Lamonier, J. F. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation. Appl. Catal. B: Environ. 2018, 223, 154–166
Liu, X. M.; Sui, Y. M.; Yang, X. Y.; Wei, Y. J.; Zou, B. Cu nanowires with clean surfaces: Synthesis and enhanced electrocatalytic activity. ACS Appl. Mater. Interfaces 2016, 8, 26886–26894.
Wang, G. X.; Sui, Y. M.; Zhang, M. N.; Xu, M.; Zeng, Q. X.; Liu, C.; Liu, X. M.; Du, F.; Zou, B. One-pot synthesis of uniform Cu2O–CuO–TiO2 hollow nanocages with highly stable lithium storage properties. J. Mater. Chem. A 2017, 5, 18577–18584.
Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Grätzel, M. Ultrathin films on copper(I) oxide water splitting photocathodes: A study on performance and stability. Energy Environ. Sci. 2012, 5, 8673–8681.
Luo, J. S.; Steier, L.; Son, M. K.; Schreier, M.; Mayer, M. T.; Grätzel, M. Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 2016, 16, 1848–1857.
Li, C. L.; Hisatomi, T.; Watanabe, O.; Nakabayashi, M.; Shibata, N.; Domen, K.; Delaunay, J. J. Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energy Environ. Sci. 2015, 8, 1493–1500.
Barnett, S. M.; Goldberg, K. I.; Mayer, J. M. A soluble copper–bipyridine water-oxidation electrocatalyst. Nat. Chem. 2012, 4, 498–502.
Chen, Z. F.; Meyer, T. J. Copper(II) catalysis of water oxidation. Angew. Chem., Int. Ed. 2013, 52, 700–703.
Yu, F. S.; Li, F.; Zhang, B. B.; Li, H.; Sun, L. C. Efficient electrocatalytic water oxidation by a copper oxide thin film in borate buffer. ACS Catal. 2015, 5, 627–630.
Hou, C. C.; Fu, W. F.; Chen, Y. Self-supported Cu-based nanowire arrays as noble-metal-free electrocatalysts for oxygen evolution. ChemSusChem 2016, 9, 2069–2073.
Zhang, W.; Wen, X.; Yang, S.; Berta, Y.; Wang, Z. L. Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv. Mater. 2003, 15, 822–825.
Reichardt, W.; Gompf, F.; Aïn, M.; Wanklyn, B. M. Lattice dynamics of cupric oxide. Z. Phys. B Condens. Matter 1990, 81, 19–24.
Xu, J. F.; Ji, W.; Shen, Z. X.; Li, W. S.; Tang, S. H.; Ye, X. R.; Jia, D. Z.; Xin, X. Q. Raman spectra of CuO nanocrystals. J. Raman Spectrosc. 1999, 30, 413–415.
Deng, Y. L.; Handoko, A. D.; Du, Y. H.; Xi, S. B.; Yeo, B. S. In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of CuIII oxides as catalytically active species. ACS Catal. 2016, 6, 2473–2481.
Reydellet, J.; Balkanski, M.; Trivich, D. Light scattering and infrared absorption in cuprous oxide. Phys. Status Solidi (B) 1972, 52, 175–185.
Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Eden Prairie, MN: Physical Electronics, 1995.
Li, C. L.; Li, Y. B.; Delaunay, J. J. A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells. ACS Appl. Mater. Interfaces 2014, 6, 480–486.
Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157.
Pickrahn, K. L.; Park, S. W.; Gorlin, Y.; Lee, H. B. R.; Jaramillo, T. F.; Bent, S. F. Active MnOx electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions. Adv. Energy Mater. 2012, 2, 1269–1277.
Mao, S.; Lu, G. H.; Chen, J. H. Three-dimensional graphene-based composites for energy applications. Nanoscale 2015, 7, 6924–6943.
Brooker, M. H.; Bates, J. B. Raman and infrared spectral studies of anhydrous Li2CO3 and Na2CO3. J. Chem. Phys. 1971, 54, 4788–4796.
Su, D. W.; Xie, X. Q.; Dou, S. X.; Wang, G. X. CuO single crystal with exposed {001} facets-A highly efficient material for gas sensing and Li-ion battery applications. Sci. Rep. 2014, 4, 5753.
Trasatti, S.; Petrii, O. A. Real surface area measurements in electrochemistry. Pure Appl. Chem. 1991, 63, 711–734.
Acknowledgements
The XRD and electron microscopy characterizations were conducted at the Advanced Characterization Nanotechnology Platform of the University of Tokyo, supported by “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Part of this work was supported by JSPS KAKENHI Grant Number (17H03229), the JSPS Core-to-Core program (Advanced Research Networks type A), Japan (JSPS)-Korea (NRF) Bilateral program and Grants-in-Aids for Specially Promoted Research. The authors thank Prof. Yuichi Ikuhara of the University of Tokyo for his helpful discussion on electron microscopy data. The authors also thank Prof. Kazunari Domen and Prof. Takashi Hisatomi for assistance in determination of the faradaic efficiency. J.Y. thanks the support from China Scholarship Council (No. 201506210091).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Yu, J., Cao, Q., Feng, B. et al. Insights into the efficiency and stability of Cu-based nanowires for electrocatalytic oxygen evolution. Nano Res. 11, 4323–4332 (2018). https://doi.org/10.1007/s12274-018-2020-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-018-2020-1