Flexible self-charging power units for portable electronics based on folded carbon paper

Research Article


The urgent demand for portable electronics has promoted the development of high-efficiency, sustainable, and even stretchable self-charging power sources. In this work, we propose a flexible self-charging power unit based on folded carbon (FC) paper for harvesting mechanical energy from human motion and power portable electronics. The present unit mainly consists of a triboelectric nanogenerator (FC-TENG) and a supercapacitor (FC-SC), both based on folded carbon paper, as energy harvester and storage device, respectively. This favorable geometric design provides the high Young’s modulus carbon paper with excellent stretchability and enables the power unit to work even under severe deformations, such as bending, twisting, and rolling. In addition, the tensile strain can be maximized by tuning the folding angle of the triangle-folded carbon paper. Moreover, the waterproof property of the packaged device make it washable, protect it from human sweat, and enable it to work in harsh environments. Finally, the as-prepared self-charging power unit was tested by placing it on the human body to harvest mechanical energy from hand tapping, foot treading, and arm touching, successfully powering an electronic watch. This work demonstrates the impressive potential of stretchable self-charging power units, which will further promote the development of high Young’s modulus materials for wearable/portable electronics.


self-charging power unit stretchable folded carbon paper triboelectric nanogenerator supercapacitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supplementary material, approximately 1.21 MB.

Supplementary material, approximately 4.08 MB.

Supplementary material, approximately 4.54 MB.

12274_2018_2018_MOESM4_ESM.pdf (1.3 mb)
Flexible self-charging power units for portable electronics based on folded carbon paper


  1. [1]
    Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071–1074.CrossRefGoogle Scholar
  2. [2]
    Oh, J. Y.; Rondeau-Gagné, S.; Chiu, Y.-C.; Chortos, A.; Lissel, F.; Wang, G.-J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016, 539, 411–415.CrossRefGoogle Scholar
  3. [3]
    Gong, S.; Cheng, W. L. Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater. 2017, 23, 1700648.CrossRefGoogle Scholar
  4. [4]
    Liu, R. Y.; Wang, J.; Sun, T.; Wang, M. J.; Wu, C. S.; Zou, H. Y.; Song, T.; Zhang, X. H.; Lee, S.-T.; Wang, Z. L. et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: A self- charging power unit with a total efficiency of 10.5%. Nano Lett. 2017, 17, 4240–4247.CrossRefGoogle Scholar
  5. [5]
    Wen, Z.; Guo, H. Y.; Zi, Y. L.; Yeh, M.-H.; Wang, X.; Deng, J. A.; Wang, J.; Li, S. M.; Hu, C. G.; Zhu, L. P. et al. Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano 2016, 10, 6526–6534.CrossRefGoogle Scholar
  6. [6]
    Shao, H. Y.; Wen, Z.; Cheng, P.; Sun, N.; Shen, Q. Q.; Zhou, C. J.; Peng, M. F.; Yang, Y. Q.; Xie, X. K.; Sun, X. H. Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 2017, 39, 608–615.CrossRefGoogle Scholar
  7. [7]
    Fan, F.-R.; Tian, Z.-Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.CrossRefGoogle Scholar
  8. [8]
    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.CrossRefGoogle Scholar
  9. [9]
    Wang, Z. L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.CrossRefGoogle Scholar
  10. [10]
    Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M.-H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (<5Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.CrossRefGoogle Scholar
  11. [11]
    Wen, Z.; Shen, Q. Q.; Sun, X. H. Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 2017, 9, 45.CrossRefGoogle Scholar
  12. [12]
    Peng, H. S.; Fang, X. D.; Ranaei, S.; Wen, Z.; Porter, A. L. Forecasting potential sensor applications of triboelectric nanogenerators through tech mining. Nano Energy 2017, 35, 358–369.CrossRefGoogle Scholar
  13. [13]
    Wang, J.; Wen, Z.; Zi, Y. L.; Lin, L.; Wu, C. S.; Guo, H. Y.; Xi, Y.; Xu, Y. L.; Wang, Z. L. Self-powered electrochemical synthesis of polypyrrole from the pulsed output of a triboelectric nanogenerator as a sustainable energy system. Adv. Funct. Mater. 2016, 26, 3542–3548.CrossRefGoogle Scholar
  14. [14]
    Wang, X.; Wen, Z.; Guo, H. Y.; Wu, C. S.; He, X.; Lin, L.; Cao, X.; Wang, Z. L. Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 2016, 10, 11369–11376.CrossRefGoogle Scholar
  15. [15]
    Hu, Q. Y.; Wang, B.; Zhong, Q. Z.; Zhong, J. W.; Hu, B.; Zhang, X. Q.; Zhou, J. Metal-free and non-fluorine paper-based generator. Nano Energy 2015, 14, 236–244.CrossRefGoogle Scholar
  16. [16]
    Zhong, J. W.; Zhu, H. L.; Zhong, Q. Z.; Dai, J. Q.; Li, W. B.; Jang, S.-H.; Yao, Y. G.; Henderson, D.; Hu, Q. Y.; Hu, L. B. et al. Self-powered human-interactive transparent nanopaper systems. ACS Nano 2015, 9, 7399–7406.CrossRefGoogle Scholar
  17. [17]
    Lee, J.-H.; Kim, J.; Kim, T. Y.; Al Hossain, M. S.; Kim, S.-W.; Kim, J. H. All-in-one energy harvesting and storage devices. J. Mater. Chem. A 2016, 4, 7983–7999.CrossRefGoogle Scholar
  18. [18]
    Wang, J.; Wen, Z.; Zi, Y. L.; Zhou, P. F.; Lin, J.; Guo, H. Y.; Xu, Y. L.; Wang, Z. L. All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv. Funct. Mater. 2016, 26, 1070–1076.CrossRefGoogle Scholar
  19. [19]
    Shen, Q. Q.; Xie, X. K.; Peng, M. F.; Sun, N.; Shao, H. Y.; Zheng, H. C.; Wen, Z.; Sun, X. H. Self-powered vehicle emission testing system based on coupling of triboelectric and chemoresistive effects. Adv. Funct. Mater. 2018, doi: 10.1002/adfm.201703420.Google Scholar
  20. [20]
    Kim, J.; Lee, J.-H.; Lee, J.; Yamauchi, Y.; Choi, C. H.; Kim, J. H. Research update: Hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability. APL Mater. 2017, 5, 073804.CrossRefGoogle Scholar
  21. [21]
    Zi, Y. L.; Wang, Z. L. Nanogenerators: An emerging technology towards nanoenergy. APL Mater. 2017, 5, 074103.CrossRefGoogle Scholar
  22. [22]
    Wen, Z.; Yeh, M.-H.; Guo, H. Y.; Wang, J.; Zi, Y. L.; Xu, W. D.; Deng, J. A.; Zhu, L.; Wang, X.; Hu, C. G. et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2016, 2, e1600097.CrossRefGoogle Scholar
  23. [23]
    Xi, F. B.; Pang, Y. K.; Li, W.; Jiang, T.; Zhang, L. M.; Guo, T.; Liu, G. X.; Zhang, C.; Wang, Z. L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176.CrossRefGoogle Scholar
  24. [24]
    Pu, X.; Li, L. X.; Song, H. Q.; Du, C. H.; Zhao, Z. F.; Jiang, C. Y.; Cao, G. Z.; Hu, W. G.; Wang, Z. L. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 2015, 27, 2472–2478.CrossRefGoogle Scholar
  25. [25]
    Yi, F.; Wang, J.; Wang, X. F.; Niu, S. M.; Li, S. M.; Liao, Q. L.; Xu, Y. L.; You, Z.; Zhang, Y.; Wang, Z. L. Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano 2016, 10, 6519–6525.CrossRefGoogle Scholar
  26. [26]
    Luo, J. J.; Tang, W.; Fan, F. R.; Liu, C. F.; Pang, Y. K.; Cao, G. Z.; Wang, Z. L. Transparent and flexible self-charging power film and its application in a sliding unlock system in touchpad technology. ACS Nano 2016, 10, 8078–8086.CrossRefGoogle Scholar
  27. [27]
    Park, S.; Kim, H.; Vosgueritchian, M.; Cheon, S.; Kim, H.; Koo, J. H.; Kim, T. R.; Lee, S.; Schwartz, G.; Chang, H. et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 2014, 26, 7324–7332.CrossRefGoogle Scholar
  28. [28]
    Lai, Y.-C.; Deng, J. A.; Niu, S. M.; Peng, W. B.; Wu, C. S.; Liu, R. Y.; Wen, Z.; Wang, Z. L. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 2016, 28, 10024–10032.CrossRefGoogle Scholar
  29. [29]
    Fan, Y. J.; Meng, X. S.; Li, H. Y.; Kuang, S. Y.; Zhang, L.; Wu, Y.; Wang, Z. L.; Zhu, G. Stretchable porous carbon nanotube-elastomer hybrid nanocomposite for harvesting mechanical energy. Adv. Mater. 2017, 29, 1603115.CrossRefGoogle Scholar
  30. [30]
    Li, S. M.; Wang, J.; Peng, W. B.; Lin, L.; Zi, Y. L.; Wang, S. H.; Zhang, G.; Wang, Z. L. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv. Energy Mater. 2017, 7, 1602832.CrossRefGoogle Scholar
  31. [31]
    Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.CrossRefGoogle Scholar
  32. [32]
    Wu, C. S.; Wang, X.; Lin, L.; Guo, H. Y.; Wang, Z. L. Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 2016, 10, 4652–4659.CrossRefGoogle Scholar
  33. [33]
    Guo, H. Y.; Yeh, M.-H.; Zi, Y. L.; Wen, Z.; Chen, J.; Liu, G. L.; Hu, C. G.; Wang, Z. L. Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 2017, 11, 4475–4482.CrossRefGoogle Scholar
  34. [34]
    Yang, P.-K.; Lin, Z.-H.; Pradel, K. C.; Lin, L.; Li, X. H.; Wen, X. N.; He, J.-H.; Wang, Z. L. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 2015, 9, 901–907.CrossRefGoogle Scholar
  35. [35]
    Guo, H. Y.; Yeh, M.-H.; Lai, Y.-C.; Zi, Y. L.; Wu, C. S.; Wen, Z.; Hu, C. G.; Wang, Z. L. All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 2016, 10, 10580–10588.CrossRefGoogle Scholar
  36. [36]
    Zhang, X. H.; Lu, X. H.; Shen, Y. Q.; Han, J. B.; Yuan, L. Y.; Gong, L.; Xu, Z.; Bai, X. D.; Wei, M.; Tong, Y. X. et al. Three-dimensional WO3 nanostructures on carbon paper: Photoelectrochemical property and visible light driven photocatalysis. Chem. Commun. 2011, 47, 5804–5806.CrossRefGoogle Scholar
  37. [37]
    Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.; Jung, I.-S.; Jin, M. H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y. et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992.CrossRefGoogle Scholar
  38. [38]
    Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.CrossRefGoogle Scholar
  39. [39]
    Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.CrossRefGoogle Scholar
  40. [40]
    Sun, N.; Wen, Z.; Zhao, F. P.; Yang, Y. Q.; Shao, H. Y.; Zhou, C. J.; Shen, Q. Q.; Feng, K.; Peng, M. F.; Li, Y. G. et al. All flexible electrospun papers based self-charging power system. Nano Energy 2017, 38, 210–217.CrossRefGoogle Scholar
  41. [41]
    Chen, S. W.; Cao, X.; Wang, N.; Ma, L.; Zhu, H. R.; Willander, M.; Jie, Y.; Wang, Z. L. An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing. Adv. Energy Mater. 2017, 7, 1601255.CrossRefGoogle Scholar
  42. [42]
    Zhong, Q. Z.; Zhong, J. W.; Hu, B.; Hu, Q. Y.; Zhou, J.; Wang, Z. L. A paper-based nanogenerator as a power source and active sensor. Energy Environ. Sci. 2013, 6, 1779–1784.CrossRefGoogle Scholar
  43. [43]
    Zhong, Q. Z.; Zhong, J. W.; Cheng, X. F.; Yao, X.; Wang, B.; Li, W. B.; Wu, N.; Liu, K.; Hu, B.; Zhou, J. Paper-based active tactile sensor array. Adv. Mater. 2015, 27, 7130–7136.CrossRefGoogle Scholar
  44. [44]
    Zi, Y. l.; Guo, H. Y.; Wang, J.; Wen, Z.; Li, S. M.; Hu, C. G.; Wang, Z. L. An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy 2017, 31, 302–310.CrossRefGoogle Scholar
  45. [45]
    Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Changjie Zhou
    • 1
  • Yanqin Yang
    • 1
    • 2
  • Na Sun
    • 1
    • 2
  • Zhen Wen
    • 1
    • 2
  • Ping Cheng
    • 1
    • 3
    • 4
  • Xinkai Xie
    • 1
  • Huiyun Shao
    • 1
  • Qingqing Shen
    • 1
  • Xiaoping Chen
    • 1
    • 2
  • Yina Liu
    • 6
  • Zhong Lin Wang
    • 3
    • 4
    • 5
  • Xuhui Sun
    • 1
  1. 1.Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, and Joint International Research Laboratory of Carbon-Based Functional Materials and DevicesSoochow UniversitySuzhouChina
  2. 2.Nantong Textile & Silk Industrial Technology Research InstituteJiangsu Industrial Technology Research Institute of Textile & SilkNantongChina
  3. 3.CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  4. 4.School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  5. 5.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  6. 6.Department of Mathematical SciencesXi’an Jiaotong-Liverpool UniversitySuzhouChina

Personalised recommendations