Yolk–shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption

  • Xiaofang Liu
  • Chengcheng Hao
  • Lihua He
  • Cheng Yang
  • Yubin Chen
  • Chengbao Jiang
  • Ronghai Yu
Research Article
  • 5 Downloads

Abstract

A yolk–shell structured Co-C/Void/Co9S8 ternary composite composed of a Co nanoparticle-embedded porous carbon core and Co9S8 shell was synthesized by the sulfidation of a Co-based zeolitic imidazolate framework and subsequent pyrolysis. The composition and interior cavity of the Co-C/Void/Co9S8 composite could be precisely modulated by controlling the sulfidation reaction. Due to the abundant heterointerfaces, well-controlled cavity, and magnetic–dielectric synergistic effects, the Co-C/Void/Co9S8 exhibited excellent and tunable microwave-absorbing properties. The optimized Co-C/Void/Co9S8, having a loading of 25 wt.% and thickness only 2.2 mm, displayed an ultrabroad absorption bandwidth of 8.2 GHz at high frequencies. Moreover, the composite could achieve an extremely high reflection loss of–54.02 dB at low frequencies by adjusting its loading to 30 wt.%. This study provides a new insight into promising lightweight microwave-absorbing materials with ultrabroad absorption bandwidths and strong low-frequency absorption.

Keywords

yolk–shell structure metal organic framework sulfide microwave absorption broad bandwidth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the Beijing Municipal Natural Science Foundation (No. 2172031), Beijing Municipal Science and Technology Project (No. Z161100002116029), the Aeronautical Science Foundation of China (No. 2016ZF51049), the National Natural Science Foundation of China (Nos. 51671010 and 51731002), and the Fundamental Research Funds for the Central Universities.

Supplementary material

12274_2018_2006_MOESM1_ESM.pdf (2.1 mb)
Supplementary material, approximately 2157 KB.

References

  1. [1]
    Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.CrossRefGoogle Scholar
  2. [2]
    Aissa, B.; Nedil, M.; Kroeger, J.; Hossain, M. I.; Mahmoud, K.; Rosei, F. Nanoelectromagnetic of the N-doped single wall carbon nanotube in the extremely high frequency band. Nanoscale 2017, 9, 14192–14200.CrossRefGoogle Scholar
  3. [3]
    Ding, Y.; Zhang, Z.; Luo, B. H.; Liao, Q. L.; Liu, S.; Liu, Y. C.; Zhang, Y. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res. 2017, 10, 980–990.CrossRefGoogle Scholar
  4. [4]
    Ding, Y.; Zhang, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 2016, 9, 2018–2025.CrossRefGoogle Scholar
  5. [5]
    Liu, X. F.; Cui, X. R.; Chen, Y. X.; Zhang, X. J.; Yu, R. H.; Wang, G. S.; Ma, H. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites. Carbon 2015, 95, 870–878.CrossRefGoogle Scholar
  6. [6]
    Jiang, W. C.; Wu, F.; Jiang, Y. J.; Sun, M. X.; Zhang, K.; Xia, Y. L.; Wang, D. R.; Xie, A. M. Synthesis of hollow Cu1.8S nano-cubes for electromagnetic interference shielding. Nanoscale 2017, 9, 10961–10965.CrossRefGoogle Scholar
  7. [7]
    Lv, H. L.; Guo, Y. H.; Wu, G. L.; Ji, G. B.; Zhao, Y.; Xu, Z. J. Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces 2017, 9, 5660–5668.CrossRefGoogle Scholar
  8. [8]
    Feng, J. T.; Hou, Y. H.; Wang, Y. C.; Li, L. C. Synthesis of hierarchical ZnFe2O4@SiO2@RGO core–shell microspheres for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2017, 9, 14103–14111.CrossRefGoogle Scholar
  9. [9]
    Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.CrossRefGoogle Scholar
  10. [10]
    You, W. B.; Bi, H.; She, W.; Zhang, Y.; Che, R. C. Dipolar-distribution cavity gamma-Fe2O3@C@alpha-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 2017, 13, 1602779.CrossRefGoogle Scholar
  11. [11]
    Zhang, X. M.; Ji, G. B.; Liu, W.; Quan, B.; Liang, X. H.; Shang, C. M.; Cheng, Y.; Du, Y. W. Thermal conversion of an Fe3O4@metal-organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015, 7, 12932–12942.CrossRefGoogle Scholar
  12. [12]
    Zhao, B.; Guo, X. Q.; Zhao, W. Y.; Deng, J. S.; Fan, B. B.; Shao, G.; Bai, Z. Y.; Zhang, R. Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 2017, 10, 331–343.CrossRefGoogle Scholar
  13. [13]
    Tian, C. H.; Du, Y. C.; Cui, C. S.; Deng, Z. L.; Xue, J. L.; Xu, P.; Qiang, R.; Wang, Y.; Han, X. J. Synthesis and microwave absorption enhancement of yolk–shell Fe3O4@C microspheres. J. Mater. Sci. 2017, 52, 6349–6361.CrossRefGoogle Scholar
  14. [14]
    Yu, M.; Liang, C. Y.; Liu, M. M.; Liu, X. L.; Yuan, K. P.; Cao, H.; Che, R. C. Yolk–shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption. J. Mater. Chem. C 2014, 2, 7275–7283.CrossRefGoogle Scholar
  15. [15]
    Hou, Y.; Cheng, L. F.; Zhang, Y. N.; Yang, Y.; Deng, C. R.; Yang, Z. H.; Chen, Q.; Wang, P.; Zheng, L. X. Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption. ACS Appl. Mater. Interfaces 2017, 9, 7265–7271.CrossRefGoogle Scholar
  16. [16]
    Quan, B.; Liang, X. H.; Ji, G. B.; Ma, J. N.; Ouyang, P. Y.; Gong, H.; Xu, G. Y.; Du, Y. W. Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces 2017, 9, 9964–9974.CrossRefGoogle Scholar
  17. [17]
    Sun, D. P.; Zou, Q.; Qian, G. Q.; Sun, C.; Jiang, W.; Li, F. S. Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties. Acta Mater. 2013, 61, 5829–5834.CrossRefGoogle Scholar
  18. [18]
    Yin, Y. C.; Liu, X. F.; Wei, X. J.; Yu, R. H.; Shui, J. L. Porous CNTs/Co composite derived from zeolitic imidazolate framework: A lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 2016, 8, 34686–34698.CrossRefGoogle Scholar
  19. [19]
    Mohr, M.; Daccache, L.; Horvat, S.; Brühne, K.; Jacob, T.; Fecht, H. J. Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films. Acta Mater. 2017, 122, 92–98.CrossRefGoogle Scholar
  20. [20]
    Wu, T.; Liu, Y.; Zeng, X.; Cui, T. T.; Zhao, Y. T.; Li, Y.; Tong, G. X. Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 2016, 8, 7370–7380.CrossRefGoogle Scholar
  21. [21]
    Chuai, D.; Liu, X. F.; Yu, R. H.; Ye, J. R.; Shi, Y. Q. Enhanced microwave absorption properties of flake-shaped FePCB metallic glass/graphene composites. Compos. Part A 2016, 89, 33–39.CrossRefGoogle Scholar
  22. [22]
    Zeng, P. Y.; Li, J. W.; Ye, M.; Zhuo, K. F.; Fang, Z. In situ formation of Co9S8/N-C hollow nanospheres by pyrolysis and sulfurization of ZIF-67 for high-performance lithiumion batteries. Chem.—Eur. J. 2017, 23, 9438.CrossRefGoogle Scholar
  23. [23]
    Long, J. Y.; Gong, Y.; Lin, J. H. Metal-organic frameworkderived Co9S8@CoS@CoO@C nanoparticles as efficient electro- and photo-catalysts for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 10495–10509.CrossRefGoogle Scholar
  24. [24]
    Cao, X. C.; Zheng, X. J.; Tian, J. H.; Jin, C.; Ke, K.; Yang, R. Z. Cobalt sulfide embedded in porous nitrogen-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. Electrochim. Acta 2016, 191, 776–783.CrossRefGoogle Scholar
  25. [25]
    Alshehri, S. M.; Ahmed, J.; Khan, A.; Naushad, M.; Ahamad, T. Bifunctional electrocatalysts (Co9S8@NSC) derived from a polymer-metal complex for the oxygen reduction and oxygen evolution reactions. ChemElectroChem 2018, 5, 355–361.CrossRefGoogle Scholar
  26. [26]
    Tang, X. K.; Huang, J.; Feng, Q. M.; Liu, K.; Luo, X. P.; Li, Z. S. Carbon sphere@Co9S8 yolk–shell structure with good morphology stability for improved lithium storage performance. Nanotechnology 2017, 28, 375402.CrossRefGoogle Scholar
  27. [27]
    Liu, X. F.; Cui, X. R.; Liu, Y. D.; Yin, Y. D. Stabilization of ultrafine metal nanocatalysts on thin carbon sheets. Nanoscale 2015, 7, 18320–18326.CrossRefGoogle Scholar
  28. [28]
    Lei, M.; Fu, X. L.; Yang, H. J.; Wang, Y. G.; Zhang, Y. B.; Li, P. G. Solvothermal route to S-deficient CoS nanoplates and their cathodoluminescence and magnetic properties. J. Nanosci. Nanotechnol. 2012, 12, 2586–2590.CrossRefGoogle Scholar
  29. [29]
    Zeng, X.; Shui, J.; Liu, X.; Liu, Q.; Li, Y.; Shang, J.; Zheng, L.; Yu, R. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 2018, 8, 1701345.CrossRefGoogle Scholar
  30. [30]
    Liu, Q. T.; Liu, X. F.; Zheng, L. R.; Shui, J. L. The solidphase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2018, 57, 1204–1208.CrossRefGoogle Scholar
  31. [31]
    Geng, H. B.; Yang, J.; Dai, Z. F.; Zhang, Y.; Zheng, Y.; Yu, H.; Wang, H. W.; Luo, Z. Z.; Guo, Y. Y.; Zhang, Y. F. et al. Co9S8/MoS2 yolk–shell spheres for advanced Li/Na storage. Small 2017, 13, 1603490.CrossRefGoogle Scholar
  32. [32]
    Fan, H. H.; Li, H. H.; Huang, K. C.; Fan, C. Y.; Zhang, X. Y.; Wu, X. L.; Zhang, J. P. Metastable marcasite-FeS2 as a new anode material for lithium ion batteries: CNFs-improved lithiation/delithiation reversibility and Li-storage properties. ACS Appl. Mater. Interfaces 2017, 9, 10708–10716.CrossRefGoogle Scholar
  33. [33]
    Lu, F.; Zhou, M.; Li, W. R.; Weng, Q. H.; Li, C. L.; Xue, Y. M.; Jiang, X. F.; Zeng, X. H.; Bando, Y.; Golberg, D. Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 2016, 26, 313–323.CrossRefGoogle Scholar
  34. [34]
    Zhao, H. B.; Fu, Z. B.; Chen, H. B.; Zhong, M. L.; Wang, C. Y. Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route. ACS Appl. Mater. Interfaces 2016, 8, 1468–1477.CrossRefGoogle Scholar
  35. [35]
    Lv, H. L.; Liang, X. H.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 9776–9783.CrossRefGoogle Scholar
  36. [36]
    Yang, Z. H.; Lv, H. L.; Wu, R. B. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 2016, 9, 3671–3682.CrossRefGoogle Scholar
  37. [37]
    Lv, H. L.; Zhang, H. Q.; Ji, G. B.; Xu, Z. J. Interface strategy to achieve tunable high frequency attenuation. ACS Appl. Mater. Interfaces 2016, 8, 6529–6538.CrossRefGoogle Scholar
  38. [38]
    Tian, X.; Meng, F. B.; Meng, F. C.; Chen, X. N.; Guo, Y. F.; Wang, Y.; Zhu, W. J.; Zhou, Z. W. Synergistic enhancement of microwave absorption using hybridized polyaniline@helical CNTs with dual chirality. ACS Appl. Mater. Interfaces 2017, 9, 15711–15718.CrossRefGoogle Scholar
  39. [39]
    Zhang, X. M.; Ji, G. B.; Liu, W.; Zhang, X. X.; Gao, Q. W.; Li, Y. C.; Du, Y. W. A novel Co/TiO2 nanocomposite derived from a metal-organic framework: Synthesis and efficient microwave absorption. J. Mater. Chem. C 2016, 4, 1860–1870.CrossRefGoogle Scholar
  40. [40]
    Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 2017, 10, 1595–1607.CrossRefGoogle Scholar
  41. [41]
    Liu, X. F.; Nie, X. Y.; Yu, R. H.; Feng, H. B. Design of dual-frequency electromagnetic wave absorption by interface modulation strategy. Chem. Eng. J. 2018, 334, 153–161.CrossRefGoogle Scholar
  42. [42]
    She, W.; Bi, H.; Wen, Z. W.; Liu, Q. H.; Zhao, X. B.; Zhang, J.; Che, R. C. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@a-MnO2 microspindles studied by electron holography. ACS Appl. Mater. Interfaces 2016, 8, 9782–9789.CrossRefGoogle Scholar
  43. [43]
    Chen, N.; Jiang, J. T.; Xu, C. Y.; Yuan, Y.; Gong, Y. X.; Zhen, L. Co7Fe3 and Co7Fe3@SiO2 nanospheres with tunable diameters for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2017, 9, 21933–21941.CrossRefGoogle Scholar
  44. [44]
    Lv, H. L.; Ji, G. B.; Liang, X. H.; Zhang, H. Q.; Du, Y. W. A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 2015, 3, 5056–5064.CrossRefGoogle Scholar
  45. [45]
    Liu, X. F.; Chen, Y. X.; Cui, X. R.; Zeng, M.; Yu, R. H.; Wang, G. S. Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J. Mater. Chem. A 2015, 3, 12197–12204.CrossRefGoogle Scholar
  46. [46]
    Yang, Y.; Li, M.; Wu, Y. P.; Wang, T.; Choo, E. S. G.; Ding, J.; Zong, B. Y.; Yang, Z. H.; Xue, J. M. Nanoscaled self-alignment of Fe3O4 nanodiscs in ultrathin rGO films with engineered conductivity for electromagnetic interference shielding. Nanoscale 2016, 8, 15989–15998.CrossRefGoogle Scholar
  47. [47]
    Ren, X.; Yang, H. T.; Tang, J.; Li, Z. A.; Su, Y. K.; Geng, S.; Zhou, J.; Zhang, X. Q.; Cheng, Z. H. An effective way to increase the high-frequency permeability of Fe3O4 nanorods. Nanoscale 2016, 8, 12910–12916.CrossRefGoogle Scholar
  48. [48]
    Liu, Q. T.; Liu, X. F.; Feng, H. B.; Shui, H. C.; Yu, R. H. Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 2017, 314, 320–327.CrossRefGoogle Scholar
  49. [49]
    Yin, Y. C.; Liu, X. F.; Wei, X. J.; Li, Y.; Nie, X. Y.; Yu, R. H.; Shui, J. L. Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 2017, 9, 30850–30861.CrossRefGoogle Scholar
  50. [50]
    Chen, J. P.; Sorensen, C. M.; Klabunde, K. J.; Hadjipanayis, G. C. Magnetic properties of nanophase cobalt particles synthesized in inversed micelles. J. Appl. Phys. 1994, 76, 6316–6318.CrossRefGoogle Scholar
  51. [51]
    Liu, X. F.; Hao, C. C.; Jiang, H.; Zeng, M.; Yu, R. H. Hierarchical NiCo2O4/Co3O4/NiO porous composite: A lightweight electromagnetic wave absorber with tunable absorbing performance. J. Mater. Chem. C 2017, 5, 3770–3778.CrossRefGoogle Scholar
  52. [52]
    Lv, H. L.; Zhang, H. Q.; Zhao, J.; Ji, G. B.; Du, Y. W. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 2016, 9, 1813–1822.CrossRefGoogle Scholar
  53. [53]
    Gholipur, R.; Khorshidi, Z.; Bahari, A. Enhanced absorption performance of carbon nanostructure based metamaterials and tuning impedance matching behavior by an external AC electric field. ACS Appl. Mater. Interfaces 2017, 9, 12528–12539.CrossRefGoogle Scholar
  54. [54]
    González, M.; Crespo, M.; Baselga, J.; Pozuelo, J. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range. Nanoscale 2016, 8, 10724–10730.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaofang Liu
    • 1
  • Chengcheng Hao
    • 1
  • Lihua He
    • 1
    • 2
  • Cheng Yang
    • 2
  • Yubin Chen
    • 2
  • Chengbao Jiang
    • 1
  • Ronghai Yu
    • 1
  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Beijing Institute of Aeronautical MaterialsBeijingChina

Personalised recommendations