Hyam, J. A.; Kringelbach, M. L.; Silburn, P. A.; Aziz, T. Z.; Green, A. L. The autonomic effects of deep brain stimulation—a therapeutic opportunity. Nat. Rev. Neurol.
2012, 8, 391–400.
Article
Google Scholar
Jackson, A.; Zimmermann, J. B. Neural interfaces for the brain and spinal cord—restoring motor function. Nat. Rev. Neurol.
2012, 8, 690–699.
Article
Google Scholar
Birmingham, K.; Gradinaru, V.; Anikeeva, P.; Grill, W. M.; Pikov, V.; McLaughlin, B.; Pasricha, P.; Weber, D.; Ludwig, K.; Famm, K. Bioelectronic medicines: A research roadmap. Nat. Rev. Drug Discov.
2014, 13, 399–400.
Article
Google Scholar
Fox, D. The shock tactics set to shake up immunology. Nature
2017, 545, 20–22.
Article
Google Scholar
Kozai, T. D. Y.; Jaquins-Gerstl, A. S.; Vazquez, A. L.; Michael, A. C.; Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci.
2015, 6, 48–67.
Article
Google Scholar
Gunasekera, B.; Saxena, T.; Bellamkonda, R.; Karumbaiah, L. Intracortical recording interfaces: Current challenges to chronic recording function. ACS Chem. Neurosci.
2015, 6, 68–83.
Article
Google Scholar
Lacour, S. P.; Courtine, G.; Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater.
2016, 1, 16063.
Article
Google Scholar
Jeong, J. W.; Shin, G.; Park, S. I.; Yu, K. J.; Xu, L. Z.; Rogers, J. A. Soft materials in neuroengineering for hard problems in neuroscience. Neuron
2015, 86, 175–186.
Article
Google Scholar
Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater.
2016, 28, 4203–4218.
Article
Google Scholar
Green, R.; Abidian, M. R. Conducting polymers for neural prosthetic and neural interface applications. Adv. Mater.
2015, 27, 7620–7637.
Article
Google Scholar
Tian, B. Z.; Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem.
2013, 6, 31–51.
Article
Google Scholar
Duan, X. J.; Fu, T. M.; Liu, J.; Lieber, C. M. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today
2013, 8, 351–373.
Article
Google Scholar
Zimmerman, J.; Parameswaran, R.; Tian, B. Z. Nanoscale semiconductor devices as new biomaterials. Biomater. Sci.
2014, 2, 619–626.
Article
Google Scholar
Cohen-Karni, T.; Langer, R.; Kohane, D. S. The smartest materials: The future of nanoelectronics in medicine. ACS Nano
2012, 6, 6541–6545.
Article
Google Scholar
Esch, E. W.; Bahinski, A.; Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov.
2015, 14, 248–260.
Article
Google Scholar
Guan, A.; Hamilton, P.; Wang, Y.; Gorbet, M.; Li, Z. Y.; Phillips, K. S. Medical devices on chips. Nat. Biomed. Eng.
2017, 1, 0045.
Article
Google Scholar
Feinberg, A. W. Biological soft robotics. Annu. Rev. Biomed. Eng.
2015, 17, 243–265.
Article
Google Scholar
Patino, T.; Mestre, R.; Sánchez, S. Miniaturized soft bio-hybrid robotics: A step forward into healthcare applications. Lab Chip
2016, 16, 3626–3630.
Article
Google Scholar
Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol.
2011, 6, 13–22.
Article
Google Scholar
Bajaj, P.; Schweller, R. M.; Khademhosseini, A.; West, J. L.; Bashir, R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng.
2014, 16, 247–276.
Article
Google Scholar
Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater.
2012, 11, 986–994.
Article
Google Scholar
Dai, X. C.; Zhou, W.; Gao, T.; Liu, J.; Lieber, C. M. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol.
2016, 11, 776–782.
Article
Google Scholar
Liu, J.; Xie, C.; Dai, X.; Jin, L.; Zhou, W.; Lieber, C. M. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. USA
2013, 110, 6694–6699.
Article
Google Scholar
Feiner, R.; Engel, L.; Fleischer, S.; Malki, M.; Gal, I.; Shapira, A.; Shacham-Diamand, Y.; Dvir, T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater.
2016, 15, 679–685.
Article
Google Scholar
Zhang, Y. H.; Zhang, F.; Yan, Z.; Ma, Q.; Li, X. L.; Huang, Y. G.; Rogers, J. A. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater.
2017, 2, 17019.
Article
Google Scholar
Murphy, S. V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol.
2014, 32, 773–785.
Article
Google Scholar
Do, A. V.; Khorsand, B.; Geary, S. M.; Salem, A. K. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater.
2015, 4, 1742–1762.
Article
Google Scholar
Kong, Y. L.; Gupta, M. K.; Johnson, B. N.; McAlpine, M. C. 3D printed bionic nanodevices. Nano Today
2016, 11, 330–350.
Article
Google Scholar
Shin, S. R.; Farzad, R.; Tamayol, A.; Manoharan, V.; Mostafalu, P.; Zhang, Y. S.; Akbari, M.; Jung, S. M.; Kim, D.; Comotto, M. et al. A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv. Mater.
2016, 28, 3280–3289.
Article
Google Scholar
Lind, J. U.; Busbee, T. A.; Valentine, A. D.; Pasqualini, F. S.; Yuan, H. Y.; Yadid, M.; Park, S. J.; Kotikian, A.; Nesmith, A. P.; Campbell, P. H. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater.
2017, 16, 303–308.
Article
Google Scholar
Hwang, S. W.; Tao, H.; Kim, D. H.; Cheng, H. Y.; Song, J. K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y. S. et al. A physically transient form of silicon electronics. Science
2012, 337, 1640–1644.
Article
Google Scholar
Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H. Y.; Yu, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature
2016, 530, 71–76.
Article
Google Scholar
Yu, K. J.; Kuzum, D.; Hwang, S. W.; Kim, B. H.; Juul, H.; Kim, N. H.; Won, S. M.; Chiang, K.; Trumpis, M.; Richardson, A. G. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater.
2016, 15, 782–791.
Article
Google Scholar
Zhang, B. Y.; Montgomery, M.; Chamberlain, M. D.; Ogawa, S.; Korolj, A.; Pahnke, A.; Wells, L. A.; Massé, S.; Kim, J.; Reis, L. et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater.
2016, 15, 669–678.
Article
Google Scholar
Fleischer, S.; Shapira, A.; Feiner, R.; Dvir, T. Modular assembly of thick multifunctional cardiac patches. Proc. Natl. Acad. Sci. USA
2017, 114, 1898–1903.
Article
Google Scholar
Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng.
2008, 10, 275–309.
Article
Google Scholar
Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe-injectable electronics. Nat. Nanotechnol.
2015, 10, 629–636.
Article
Google Scholar
Xie, C.; Liu, J.; Fu, T. M.; Dai, X. C.; Zhou, W.; Lieber, C. M. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater.
2015, 14, 1286–1292.
Article
Google Scholar
Luan, L.; Wei, X. L.; Zhao, Z. T.; Siegel, J. J.; Potnis, O.; Tuppen, C. A.; Lin, S. Q.; Kazmi, S.; Fowler, R. A.; Holloway, S. et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv.
2017, 3, e1601966.
Article
Google Scholar
Chen, R.; Canales, A.; Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater.
2017, 2, 16093.
Article
Google Scholar
Tee, B. C. K.; Chortos, A.; Berndt, A.; Nguyen, A. K.; Tom, A.; McGuire, A.; Lin, Z. C.; Tien, K.; Bae, W. G.; Wang, H. L. et al. A skin-inspired organic digital mechanoreceptor. Science
2015, 350, 313–316.
Article
Google Scholar
Kim, C. K.; Adhikari, A.; Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci.
2017, 18, 222–235.
Article
Google Scholar
Rivnay, J.; Wang, H. L.; Fenno, L.; Deisseroth, K.; Malliaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv.
2017, 3, e1601649.
Article
Google Scholar
Carvalho-de-Souza, J. L.; Treger, J. S.; Dang, B.; Kent, S. B. H.; Pepperberg, D. R.; Bezanilla, F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron
2015, 86, 207–217.
Article
Google Scholar
Eom, K.; Kim, J.; Choi, J. M.; Kang, T.; Chang, J. W.; Byun, K. M.; Jun, S. B.; Kim, S. J. Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small
2014, 10, 3853–3857.
Article
Google Scholar
Yoo, S.; Hong, S.; Choi, Y.; Park, J. H.; Nam, Y. Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano
2014, 8, 8040–8049.
Article
Google Scholar
Lyu, Y.; Xie, C.; Chechetka, S. A.; Miyako, E.; Pu, K. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc.
2016, 138, 9049–9052.
Article
Google Scholar
Jiang, Y. W.; Carvalho-de-Souza, J. L.; Wong, R. C. S.; Luo, Z. Q.; Isheim, D.; Zuo, X. B.; Nicholls, A. W.; Jung, I. W.; Yue, J. P.; Liu, D. J. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater.
2016, 15, 1023–1030.
Article
Google Scholar
Huang, H.; Delikanli, S.; Zeng, H.; Ferkey, D. M.; Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol.
2010, 5, 602–606.
Article
Google Scholar
Stanley, S. A.; Gagner, J. E.; Damanpour, S.; Yoshida, M.; Dordick, J. S.; Friedman, J. M. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science
2012, 336, 604–608.
Article
Google Scholar
Chen, R.; Romero, G.; Christiansen, M. G.; Mohr, A.; Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science
2015, 347, 1477–1480.
Article
Google Scholar
Munshi, R.; Qadri, S. M.; Zhang, Q.; Castellanos Rubio, I.; Del Pino, P.; Pralle, A. Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. eLife
2017, 6, e27069.
Article
Google Scholar
Rus, D.; Tolley, M. T. Design, fabrication and control of soft robots. Nature
2015, 521, 467–475.
Article
Google Scholar
Feinberg, A. W.; Feigel, A.; Shevkoplyas, S. S.; Sheehy, S.; Whitesides, G. M.; Parker, K. K. Muscular thin films for building actuators and powering devices. Science
2007, 317, 1366–1370.
Article
Google Scholar
Nawroth, J. C.; Lee, H.; Feinberg, A. W.; Ripplinger, C. M.; McCain, M. L.; Grosberg, A.; Dabiri, J. O.; Parker, K. K. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol.
2012, 30, 792–797.
Article
Google Scholar
Cvetkovic, C.; Raman, R.; Chan, V.; Williams, B. J.; Tolish, M.; Bajaj, P.; Sakar, M. S.; Asada, H. H.; Saif, M. T. A.; Bashir, R. Three-dimensionally printed biological machines powered by skeletal muscle. Proc. Natl. Acad. Sci. USA
2014, 111, 10125–10130.
Article
Google Scholar
Raman, R.; Cvetkovic, C.; Bashir, R. A modular approach to the design, fabrication, and characterization of muscle-powered biological machines. Nat. Protoc.
2017, 12, 519–533.
Article
Google Scholar
Cvetkovic, C.; Rich, M. H.; Raman, R.; Kong, H.; Bashir, R. A 3D-printed platform for modular neuromuscular motor units. Microsyst. Nanoeng.
2017, 3, 17015.
Article
Google Scholar
Shin, S. R.; Shin, C.; Memic, A.; Shadmehr, S.; Miscuglio, M.; Jung, H. Y.; Jung, S. M.; Bae, H.; Khademhosseini, A.; Tang, X. S. et al. Aligned carbon nanotube-based flexible gel substrates for engineering biohybrid tissue actuators. Adv. Funct. Mater.
2015, 25, 4486–4495.
Article
Google Scholar
Raman, R.; Cvetkovic, C.; Uzel, S. G. M.; Platt, R. J.; Sengupta, P.; Kamm, R. D.; Bashir, R. Optogenetic skeletal muscle- powered adaptive biological machines. Proc. Natl. Acad. Sci. USA
2016, 113, 3497–3502.
Article
Google Scholar
Park, S. J.; Gazzola, M.; Park, K. S.; Park, S.; Di Santo, V.; Blevins, E. L.; Lind, J. U.; Campbell, P. H.; Dauth, S.; Capulli, A. K. et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science
2016, 353, 158–162.
Article
Google Scholar
Phan, L.; Kautz, R.; Leung, E. M.; Naughton, K. L.; Van Dyke, Y.; Gorodetsky, A. A. Dynamic materials inspired by cephalopods. Chem. Mater.
2016, 28, 6804–6816.
Article
Google Scholar
Pikul, J. H.; Li, S.; Bai, H.; Hanlon, R. T.; Cohen, I.; Shepherd, R. F. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science
2017, 358, 210–214.
Article
Google Scholar
Yu, C. J.; Li, Y. H.; Zhang, X.; Huang, X.; Malyarchuk, V.; Wang, S. D.; Shi, Y.; Gao, L.; Su, Y. W.; Zhang, Y. H. et al. Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proc. Natl. Acad. Sci. USA
2014, 111, 12998–13003.
Article
Google Scholar
Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z. et al. Tough adhesives for diverse wet surfaces. Science
2017, 357, 378–381.
Article
Google Scholar
Zhao, Q.; Lee, D. W.; Ahn, B. K.; Seo, S.; Kaufman, Y.; Israelachvili, J. N.; Waite, J. H. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat. Mater.
2016, 15, 407–412.
Article
Google Scholar
Gebbie, M. A.; Wei, W.; Schrader, A. M.; Cristiani, T. R.; Dobbs, H. A.; Idso, M.; Chmelka, B. F.; Waite, J. H.; Israelachvili, J. N. Tuning underwater adhesion with cation-π interactions. Nat. Chem.
2017, 9, 473–479.
Article
Google Scholar
Iturri, J.; Xue, L. J.; Kappl, M.; García-Fernández, L.; Barnes, W. J. P.; Butt, H. J.; del Campo, A. Torrent frog-inspired adhesives: Attachment to flooded surfaces. Adv. Funct. Mater.
2015, 25, 1499–1505.
Article
Google Scholar
Drotlef, D. M.; Stepien, L.; Kappl, M.; Barnes, W. J. P.; Butt, H. J.; del Campo, A. Insights into the adhesive mechanisms of tree frogs using artificial mimics. Adv. Funct. Mater.
2013, 23, 1137–1146.
Article
Google Scholar
Xue, L. J.; Sanz, B.; Luo, A. Y.; Turner, K. T.; Wang, X.; Tan, D.; Zhang, R.; Du, H.; Steinhart, M.; Mijangos, C. et al. Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog. ACS Nano
2017, 11, 9711–9719.
Article
Google Scholar
Lee, H.; Lee, B. P.; Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature
2007, 448, 338–341.
Article
Google Scholar
Mahdavi, A.; Ferreira, L.; Sundback, C.; Nichol, J. W.; Chan, E. P.; Carter, D. J. D.; Bettinger, C. J.; Patanavanich, S.; Chignozha, L.; Ben-Joseph, E. et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc. Natl. Acad. Sci. USA
2008, 105, 2307–2312.
Article
Google Scholar
Frost, S. J.; Mawad, D.; Higgins, M. J.; Ruprai, H.; Kuchel, R.; Tilley, R. D.; Myers, S.; Hook, J. M.; Lauto, A. Gecko-inspired chitosan adhesive for tissue repair. NPG Asia Mater.
2016, 8, e280.
Article
Google Scholar
Luo, Z. Q.; Jiang, Y. W.; Myers, B. D.; Isheim, D.; Wu, J. S.; Zimmerman, J. F.; Wang, Z. G.; Li, Q. Q.; Wang, Y. C.; Chen, X. Q. et al. Atomic gold-enabled three-dimensional lithography for silicon mesostructures. Science
2015, 348, 1451–1455.
Article
Google Scholar
Cho, W. K.; Ankrum, J. A.; Guo, D. G.; Chester, S. A.; Yang, S. Y.; Kashyap, A.; Campbell, G. A.; Wood, R. J.; Rijal, R. K.; Karnik, R. et al. Microstructured barbs on the North American porcupine quill enable easy tissue penetration and difficult removal. Proc. Natl. Acad. Sci. USA
2012, 109, 21289–21294.
Article
Google Scholar
Yang, S. Y.; O’Cearbhaill, E. D.; Sisk, G. C.; Park, K. M.; Cho, W. K.; Villiger, M.; Bouma, B. E.; Pomahac, B.; Karp, J. M. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat. Commun.
2013, 4, 1702.
Article
Google Scholar
Yi, J.; Wang, Y. C.; Jiang, Y. W.; Jung, I. W.; Liu, W. J.; De Andrade, V.; Xu, R. Q.; Parameswaran, R.; Peters, I. R.; Divan, R. et al. 3D calcite heterostructures for dynamic and deformable mineralized matrices. Nat. Commun.
2017, 8, 509.
Article
Google Scholar
Chen, Y. C.; Yang, H. T. Octopus-inspired assembly of nanosucker arrays for dry/wet adhesion. ACS Nano
2017, 11, 5332–5338.
Article
Google Scholar
Lee, H.; Um, D. S.; Lee, Y.; Lim, S.; Kim, H. J.; Ko, H. Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Adv. Mater.
2016, 28, 7457–7465.
Article
Google Scholar
Baik, S.; Kim, D. W.; Park, Y.; Lee, T. J.; Ho Bhang, S.; Pang, C. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature
2017, 546, 396–400.
Article
Google Scholar
Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R-Rep.
2014, 83, 1–59.
Article
Google Scholar
Sheridan, P. M.; Cai, F. X.; Du, C.; Ma, W.; Zhang, Z. Y.; Lu, W. D. Sparse coding with memristor networks. Nat. Nanotechnol.
2017, 12, 784–789.
Article
Google Scholar
van de Burgt, Y.; Lubberman, E.; Fuller, E. J.; Keene, S. T.; Faria, G. C.; Agarwal, S.; Marinella, M. J.; Alec Talin, A.; Salleo, A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater.
2017, 16, 414–418.
Article
Google Scholar