Diameter evolution of selective area grown Ga-assisted GaAs nanowires

  • Hanno Küpers
  • Ryan B. Lewis
  • Abbes Tahraoui
  • Mathias Matalla
  • Olaf Krüger
  • Faebian Bastiman
  • Henning Riechert
  • Lutz Geelhaar
Research Article
  • 6 Downloads

Abstract

Tapering of vapour-liquid-solid (VLS) grown nanowires (NWs) is a widespread phenomenon resulting from dynamics of the liquid droplet during growth anddirect vapour-solid (VS) growth on the sidewall. To investigate both effects in ahighly controlled way, we developed a novel two-step growth approach for the selective area growth (SAG) of GaAs nanowires (NWs) by molecular beam epitaxy. In this growth approach optimum growth parameters are provided for thenucleation of NWs in a first step and for the shape variation during elongationin a second step, allowing NWs with a thin diameter (45 nm) and an untapered morphology to be realized with high vertical yield. We quantify the flux dependenceof radial VS growth and build a model that takes into account diffusion on theNW sidewalls to explain the observed VS growth rates. As our model is consistent with axial VLS growth we can combine it with an existing model for the diameter variation due to the droplet dynamics at the NW top. Thereby, we achieve fullunderstanding of the diameter of NWs over their entire length and the evolutionof the diameter and tapering during growth. We conclude that only the combinationof droplet dynamics and VS growth results in an untapered morphology. This result enables NW shape engineering and has important implications for doping of NWs.

Keywords

GaAs molecular beam epitaxy semiconductor growth model nanowire tapering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant Ge2224/2, R.B.L. acknowledges funding from the Alexander von Humboldt Foundation. We are grateful to Anne-Kathrin Bluhm for acquiring SEM images, to Michael Höricke and Carsten Stemmler as well as Arno Wirsig for technical support at the MBE system and to Bernd Drescher and Sander Rauwerdink for substrate preparation. We appreciate the critical reading of the manuscript by Patrick Vogt.

Supplementary material

12274_2018_1984_MOESM1_ESM.pdf (546 kb)
Supplementary material, approximately 547 KB.

References

  1. [1]
    Qian, F.; Gradecak, S.; Li, Y.; Wen, C. Y.; Lieber, C. M. Core/ multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.CrossRefGoogle Scholar
  2. [2]
    Tomioka, K.; Motohisa, J.; Hara, S.; Hiruma, K.; Fukui, T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 2010, 10, 1639–1644.CrossRefGoogle Scholar
  3. [3]
    Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.CrossRefGoogle Scholar
  4. [4]
    Johnson, J. C.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Yang, P. D.; Saykally, R. J. Single gallium nitride nanowire lasers. Nat. Mater. 2002, 1, 106–110.CrossRefGoogle Scholar
  5. [5]
    Hua, B.; Motohisa, J.; Kobayashi, Y.; Hara, S.; Fukui, T. Single GaAs/GaAsP coaxial core-shell nanowire lasers. Nano Lett. 2009, 9, 112–116.CrossRefGoogle Scholar
  6. [6]
    LaPierre, R. R.; Chia, A. C. E.; Gibson, S. J.; Haapamaki, C. M.; Boulanger, J. P.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewell, N. et al. III–V nanowire photovoltaics: Review of design for high efficiency. Phys. Status Solidi - Rapid Res. Lett. 2013, 7, 815–830.CrossRefGoogle Scholar
  7. [7]
    Bakkers, E. P. A. M.; Borgström, M. T.; Verheijen, M. A. Epitaxial growth of III-V nanowires on group IV substrates. MRS Bull. 2007, 32, 117–122.CrossRefGoogle Scholar
  8. [8]
    Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.CrossRefGoogle Scholar
  9. [9]
    Colombo, C.; Spirkoska, D.; Frimmer, M.; Abstreiter, G.; Fontcuberta i Morral, A. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 2008, 77, 155326.CrossRefGoogle Scholar
  10. [10]
    Jabeen, F.; Grillo, V.; Rubini, S.; Martelli, F. Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy. Nanotechnology 2008, 19, 275711.CrossRefGoogle Scholar
  11. [11]
    Munsch, M.; Malik, N. S.; Dupuy, E.; Delga, A.; Bleuse, J.; Gérard, J. M.; Claudon, J.; Gregersen, N.; Mørk, J. Dielectric GaAs antenna ensuring an efficient broadband coupling between an INAS quantum dot and a Gaussian optical beam. Phys. Rev. Lett. 2013, 110, 177402.CrossRefGoogle Scholar
  12. [12]
    Heiss, M.; Russo-Averchi, E.; Dalmau-Mallorquí, A.; Tütüncüoglu, G.; Matteini, F.; Rüffer, D.; Conesa-Boj, S.; Demichel, O.; Alarcon-Lladó, E.; Fontcuberta i Morral, A. III–V nanowire arrays: Growth and light interaction. Nanotechnology 2014, 25, 014015.CrossRefGoogle Scholar
  13. [13]
    Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 2001, 78, 2214–2216.CrossRefGoogle Scholar
  14. [14]
    Paek, J. H.; Nishiwaki, T.; Yamaguchi, M.; Sawaki, N. Catalyst free MBE-VLS growth of GaAs nanowires on (111)Si substrate. Phys. Status Solidi 2009, 6, 1436–1440.CrossRefGoogle Scholar
  15. [15]
    Rudolph, D.; Hertenberger, S.; Bolte, S.; Paosangthong, W.; Spirkoska, D.; Döblinger, M.; Bichler, M.; Finley, J. J.; Abstreiter, G.; Koblmüller, G. Direct observation of a noncatalytic growth regime for GaAs nanowires. Nano Lett. 2011, 11, 3848–3854.CrossRefGoogle Scholar
  16. [16]
    Krogstrup, P.; Jørgensen, H. I.; Johnson, E.; Madsen, M. H.; Sørensen, C. B.; Fontcuberta i Morral, A.; Aagesen, M.; Nygård, J.; Glas, F. Advances in the theory of III–V nanowire growth dynamics. J. Phys. D: Appl. Phys. 2013, 46, 313001.CrossRefGoogle Scholar
  17. [17]
    Tersoff, J. Stable self-catalyzed growth of III–V nanowires. Nano Lett. 2015, 15, 6609-6613.CrossRefGoogle Scholar
  18. [18]
    Dubrovskii, V. G. Group V sensitive vapor–liquid–solid growth of Au-catalyzed and self-catalyzed III–V nanowires. J. Cryst. Growth 2016, 440, 62–68.CrossRefGoogle Scholar
  19. [19]
    Wang, Y. W.; Schmidt, V.; Senz, S.; Gösele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1, 186–189.CrossRefGoogle Scholar
  20. [20]
    Paiano, P.; Prete, P.; Lovergine, N.; Mancini, A. M. Size and shape control of GaAs nanowires grown by metalorganic vapor phase epitaxy using tertiarybutylarsine. J. Appl. Phys. 2006, 100, 094305.CrossRefGoogle Scholar
  21. [21]
    Krylyuk, S.; Davydov, A. V.; Levin, I. Tapering control of Si nanowires grown from SiCl4 at reduced pressure. ACS Nano 2011, 5, 656–664.CrossRefGoogle Scholar
  22. [22]
    Sartel, C.; Dheeraj, D. L.; Jabeen, F.; Harmand, J. C. Effect of arsenic species on the kinetics of GaAs nanowires growth by molecular beam epitaxy. J. Cryst. Growth 2010, 312, 2073–2077.CrossRefGoogle Scholar
  23. [23]
    Rieger, T.; Heiderich, S.; Lenk, S.; Lepsa, M. I.; Grützmacher, D. Ga-assisted MBE growth of GaAs nanowires using thin HSQ layer. J. Cryst. Growth 2012, 353, 39–46.CrossRefGoogle Scholar
  24. [24]
    Gibson, S.; LaPierre, R. Study of radial growth in patterned self-catalyzed GaAs nanowire arrays by gas source molecular beam epitaxy. Phys. Status Solidi-Rapid Res. Lett. 2013, 7, 845–849.CrossRefGoogle Scholar
  25. [25]
    Munshi, A. M.; Dheeraj, D. L.; Fauske, V. T.; Kim, D. C.; Huh, J.; Reinertsen, J. F.; Ahtapodov, L.; Lee, K. D.; Heidari, B.; van Helvoort, A. T. J. et al. Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography. Nano Lett. 2014, 14, 960–966.CrossRefGoogle Scholar
  26. [26]
    Motohisa, J.; Noborisaka, J.; Takeda, J.; Inari, M.; Fukui, T. Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates. J. Cryst. Growth 2004, 272, 180–185.CrossRefGoogle Scholar
  27. [27]
    Bauer, B.; Rudolph, A.; Soda, M.; Fontcuberta i Morral, A.; Zweck, J.; Schuh, D.; Reiger, E. Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy. Nanotechnology 2010, 21, 435601.CrossRefGoogle Scholar
  28. [28]
    Plissard, S. R.; Dick, K. A.; Larrieu, G.; Godey, S.; Addad, A.; Wallart, X.; Caroff, P. Gold-free growth of GaAs nanowires on silicon: Arrays and polytypism. Nanotechnology 2010, 21, 385602.CrossRefGoogle Scholar
  29. [29]
    Bastiman, F.; Küpers, H.; Somaschini, C.; Geelhaar, L. Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy. Nanotechnology 2016, 27, 095601.CrossRefGoogle Scholar
  30. [30]
    Plissard, S.; Larrieu, G.; Wallart, X.; Caroff, P. High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning. Nanotechnology 2011, 22, 275602.CrossRefGoogle Scholar
  31. [31]
    Gibson, S. J.; Boulanger, J. P.; LaPierre, R. R. Opportunities and pitfalls in patterned self-catalyzed GaAs nanowire growth on silicon. Semicond. Sci. Technol. 2013, 28, 105025.CrossRefGoogle Scholar
  32. [32]
    Rudolph, D.; Schweickert, L.; Morkötter, S.; Loitsch, B.; Hertenberger, S.; Becker, J.; Bichler, M.; Abstreiter, G.; Finley, J. J.; Koblmüller, G. Effect of interwire separation on growth kinetics and properties of site-selective GaAs nanowires. Appl. Phys. Lett. 2014, 105, 033111.CrossRefGoogle Scholar
  33. [33]
    Dubrovskii, V. G.; Xu, T.; Díaz Álvarez, A.; Plissard, S. R.; Caroff, P.; Glas, F.; Grandidier, B. Self-equilibration of the diameter of Ga-catalyzed GaAs nanowires. Nano Lett. 2015, 15, 5580-5584.CrossRefGoogle Scholar
  34. [34]
    Ralston, J.; Wicks, G. W.; Eastman, L. F. Reflection high-energy electron diffraction intensity oscillation study of Ga desorption from molecular beam epitaxially grown AlxGa1-xAs. J. Vac. Sci. Technol. B 1986, 4, 594–597.CrossRefGoogle Scholar
  35. [35]
    Fick, A. Ueber diffusion. Ann. Der Phys. Und Chem. 1855, 170, 59–86.CrossRefGoogle Scholar
  36. [36]
    Ramdani, M. R.; Harmand, J. C.; Glas, F.; Patriarche, G.; Travers, L. Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst. Growth Des. 2013, 13, 91–96.CrossRefGoogle Scholar
  37. [37]
    Casadei, A.; Krogstrup, P.; Heiss, M.; Röhr, J. A.; Colombo, C.; Ruelle, T.; Upadhyay, S.; Sørensen, C. B.; Nygård, J.; Fontcuberta i Morral, A. Doping incorporation paths in catalyst-free Be-doped GaAs nanowires. Appl. Phys. Lett. 2013, 102, 013117.Google Scholar
  38. [38]
    Borgström, M. T.; Immink, G.; Ketelaars, B.; Algra, R.; Bakkers, E. P. A. M. Synergetic nanowire growth. Nat. Nanotechnol. 2007, 2, 541–544.CrossRefGoogle Scholar
  39. [39]
    Küpers, H.; Tahraoui, A.; Lewis, R. B.; Rauwerdink, S.; Matalla, M.; Krüger, O.; Bastiman, F.; Riechert, H.; Geelhaar, L. Surface preparation and patterning by nano imprint lithography for the selective area growth of GaAs nanowires on Si(111). Semicond. Sci. Technol. 2017, 32, 115003.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hanno Küpers
    • 1
  • Ryan B. Lewis
    • 1
  • Abbes Tahraoui
    • 1
  • Mathias Matalla
    • 2
  • Olaf Krüger
    • 2
  • Faebian Bastiman
    • 1
  • Henning Riechert
    • 1
  • Lutz Geelhaar
    • 1
  1. 1.Paul-Drude-Institut für FestkörperelektronikBerlinGermany
  2. 2.Ferdinand-Braun-InstitutLeibniz-Institut für HöchstfrequenztechnikBerlinGermany

Personalised recommendations