Skip to main content
Log in

Diameter evolution of selective area grown Ga-assisted GaAs nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Tapering of vapour-liquid-solid (VLS) grown nanowires (NWs) is a widespread phenomenon resulting from dynamics of the liquid droplet during growth anddirect vapour-solid (VS) growth on the sidewall. To investigate both effects in ahighly controlled way, we developed a novel two-step growth approach for the selective area growth (SAG) of GaAs nanowires (NWs) by molecular beam epitaxy. In this growth approach optimum growth parameters are provided for thenucleation of NWs in a first step and for the shape variation during elongationin a second step, allowing NWs with a thin diameter (45 nm) and an untapered morphology to be realized with high vertical yield. We quantify the flux dependenceof radial VS growth and build a model that takes into account diffusion on theNW sidewalls to explain the observed VS growth rates. As our model is consistent with axial VLS growth we can combine it with an existing model for the diameter variation due to the droplet dynamics at the NW top. Thereby, we achieve fullunderstanding of the diameter of NWs over their entire length and the evolutionof the diameter and tapering during growth. We conclude that only the combinationof droplet dynamics and VS growth results in an untapered morphology. This result enables NW shape engineering and has important implications for doping of NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian, F.; Gradecak, S.; Li, Y.; Wen, C. Y.; Lieber, C. M. Core/ multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.

    Article  Google Scholar 

  2. Tomioka, K.; Motohisa, J.; Hara, S.; Hiruma, K.; Fukui, T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 2010, 10, 1639–1644.

    Article  Google Scholar 

  3. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

    Article  Google Scholar 

  4. Johnson, J. C.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Yang, P. D.; Saykally, R. J. Single gallium nitride nanowire lasers. Nat. Mater. 2002, 1, 106–110.

    Article  Google Scholar 

  5. Hua, B.; Motohisa, J.; Kobayashi, Y.; Hara, S.; Fukui, T. Single GaAs/GaAsP coaxial core-shell nanowire lasers. Nano Lett. 2009, 9, 112–116.

    Article  Google Scholar 

  6. LaPierre, R. R.; Chia, A. C. E.; Gibson, S. J.; Haapamaki, C. M.; Boulanger, J. P.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewell, N. et al. III–V nanowire photovoltaics: Review of design for high efficiency. Phys. Status Solidi - Rapid Res. Lett. 2013, 7, 815–830.

    Article  Google Scholar 

  7. Bakkers, E. P. A. M.; Borgström, M. T.; Verheijen, M. A. Epitaxial growth of III-V nanowires on group IV substrates. MRS Bull. 2007, 32, 117–122.

    Article  Google Scholar 

  8. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

    Article  Google Scholar 

  9. Colombo, C.; Spirkoska, D.; Frimmer, M.; Abstreiter, G.; Fontcuberta i Morral, A. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 2008, 77, 155326.

    Article  Google Scholar 

  10. Jabeen, F.; Grillo, V.; Rubini, S.; Martelli, F. Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy. Nanotechnology 2008, 19, 275711.

    Article  Google Scholar 

  11. Munsch, M.; Malik, N. S.; Dupuy, E.; Delga, A.; Bleuse, J.; Gérard, J. M.; Claudon, J.; Gregersen, N.; Mørk, J. Dielectric GaAs antenna ensuring an efficient broadband coupling between an INAS quantum dot and a Gaussian optical beam. Phys. Rev. Lett. 2013, 110, 177402.

    Article  Google Scholar 

  12. Heiss, M.; Russo-Averchi, E.; Dalmau-Mallorquí, A.; Tütüncüoglu, G.; Matteini, F.; Rüffer, D.; Conesa-Boj, S.; Demichel, O.; Alarcon-Lladó, E.; Fontcuberta i Morral, A. III–V nanowire arrays: Growth and light interaction. Nanotechnology 2014, 25, 014015.

    Article  Google Scholar 

  13. Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 2001, 78, 2214–2216.

    Article  Google Scholar 

  14. Paek, J. H.; Nishiwaki, T.; Yamaguchi, M.; Sawaki, N. Catalyst free MBE-VLS growth of GaAs nanowires on (111)Si substrate. Phys. Status Solidi 2009, 6, 1436–1440.

    Article  Google Scholar 

  15. Rudolph, D.; Hertenberger, S.; Bolte, S.; Paosangthong, W.; Spirkoska, D.; Döblinger, M.; Bichler, M.; Finley, J. J.; Abstreiter, G.; Koblmüller, G. Direct observation of a noncatalytic growth regime for GaAs nanowires. Nano Lett. 2011, 11, 3848–3854.

    Article  Google Scholar 

  16. Krogstrup, P.; Jørgensen, H. I.; Johnson, E.; Madsen, M. H.; Sørensen, C. B.; Fontcuberta i Morral, A.; Aagesen, M.; Nygård, J.; Glas, F. Advances in the theory of III–V nanowire growth dynamics. J. Phys. D: Appl. Phys. 2013, 46, 313001.

    Article  Google Scholar 

  17. Tersoff, J. Stable self-catalyzed growth of III–V nanowires. Nano Lett. 2015, 15, 6609-6613.

    Article  Google Scholar 

  18. Dubrovskii, V. G. Group V sensitive vapor–liquid–solid growth of Au-catalyzed and self-catalyzed III–V nanowires. J. Cryst. Growth 2016, 440, 62–68.

    Article  Google Scholar 

  19. Wang, Y. W.; Schmidt, V.; Senz, S.; Gösele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1, 186–189.

    Article  Google Scholar 

  20. Paiano, P.; Prete, P.; Lovergine, N.; Mancini, A. M. Size and shape control of GaAs nanowires grown by metalorganic vapor phase epitaxy using tertiarybutylarsine. J. Appl. Phys. 2006, 100, 094305.

    Article  Google Scholar 

  21. Krylyuk, S.; Davydov, A. V.; Levin, I. Tapering control of Si nanowires grown from SiCl4 at reduced pressure. ACS Nano 2011, 5, 656–664.

    Article  Google Scholar 

  22. Sartel, C.; Dheeraj, D. L.; Jabeen, F.; Harmand, J. C. Effect of arsenic species on the kinetics of GaAs nanowires growth by molecular beam epitaxy. J. Cryst. Growth 2010, 312, 2073–2077.

    Article  Google Scholar 

  23. Rieger, T.; Heiderich, S.; Lenk, S.; Lepsa, M. I.; Grützmacher, D. Ga-assisted MBE growth of GaAs nanowires using thin HSQ layer. J. Cryst. Growth 2012, 353, 39–46.

    Article  Google Scholar 

  24. Gibson, S.; LaPierre, R. Study of radial growth in patterned self-catalyzed GaAs nanowire arrays by gas source molecular beam epitaxy. Phys. Status Solidi-Rapid Res. Lett. 2013, 7, 845–849.

    Article  Google Scholar 

  25. Munshi, A. M.; Dheeraj, D. L.; Fauske, V. T.; Kim, D. C.; Huh, J.; Reinertsen, J. F.; Ahtapodov, L.; Lee, K. D.; Heidari, B.; van Helvoort, A. T. J. et al. Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography. Nano Lett. 2014, 14, 960–966.

    Article  Google Scholar 

  26. Motohisa, J.; Noborisaka, J.; Takeda, J.; Inari, M.; Fukui, T. Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates. J. Cryst. Growth 2004, 272, 180–185.

    Article  Google Scholar 

  27. Bauer, B.; Rudolph, A.; Soda, M.; Fontcuberta i Morral, A.; Zweck, J.; Schuh, D.; Reiger, E. Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy. Nanotechnology 2010, 21, 435601.

    Article  Google Scholar 

  28. Plissard, S. R.; Dick, K. A.; Larrieu, G.; Godey, S.; Addad, A.; Wallart, X.; Caroff, P. Gold-free growth of GaAs nanowires on silicon: Arrays and polytypism. Nanotechnology 2010, 21, 385602.

    Article  Google Scholar 

  29. Bastiman, F.; Küpers, H.; Somaschini, C.; Geelhaar, L. Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy. Nanotechnology 2016, 27, 095601.

    Article  Google Scholar 

  30. Plissard, S.; Larrieu, G.; Wallart, X.; Caroff, P. High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning. Nanotechnology 2011, 22, 275602.

    Article  Google Scholar 

  31. Gibson, S. J.; Boulanger, J. P.; LaPierre, R. R. Opportunities and pitfalls in patterned self-catalyzed GaAs nanowire growth on silicon. Semicond. Sci. Technol. 2013, 28, 105025.

    Article  Google Scholar 

  32. Rudolph, D.; Schweickert, L.; Morkötter, S.; Loitsch, B.; Hertenberger, S.; Becker, J.; Bichler, M.; Abstreiter, G.; Finley, J. J.; Koblmüller, G. Effect of interwire separation on growth kinetics and properties of site-selective GaAs nanowires. Appl. Phys. Lett. 2014, 105, 033111.

    Article  Google Scholar 

  33. Dubrovskii, V. G.; Xu, T.; Díaz Álvarez, A.; Plissard, S. R.; Caroff, P.; Glas, F.; Grandidier, B. Self-equilibration of the diameter of Ga-catalyzed GaAs nanowires. Nano Lett. 2015, 15, 5580-5584.

    Article  Google Scholar 

  34. Ralston, J.; Wicks, G. W.; Eastman, L. F. Reflection high-energy electron diffraction intensity oscillation study of Ga desorption from molecular beam epitaxially grown AlxGa1-xAs. J. Vac. Sci. Technol. B 1986, 4, 594–597.

    Article  Google Scholar 

  35. Fick, A. Ueber diffusion. Ann. Der Phys. Und Chem. 1855, 170, 59–86.

    Article  Google Scholar 

  36. Ramdani, M. R.; Harmand, J. C.; Glas, F.; Patriarche, G.; Travers, L. Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst. Growth Des. 2013, 13, 91–96.

    Article  Google Scholar 

  37. Casadei, A.; Krogstrup, P.; Heiss, M.; Röhr, J. A.; Colombo, C.; Ruelle, T.; Upadhyay, S.; Sørensen, C. B.; Nygård, J.; Fontcuberta i Morral, A. Doping incorporation paths in catalyst-free Be-doped GaAs nanowires. Appl. Phys. Lett. 2013, 102, 013117.

    Google Scholar 

  38. Borgström, M. T.; Immink, G.; Ketelaars, B.; Algra, R.; Bakkers, E. P. A. M. Synergetic nanowire growth. Nat. Nanotechnol. 2007, 2, 541–544.

    Article  Google Scholar 

  39. Küpers, H.; Tahraoui, A.; Lewis, R. B.; Rauwerdink, S.; Matalla, M.; Krüger, O.; Bastiman, F.; Riechert, H.; Geelhaar, L. Surface preparation and patterning by nano imprint lithography for the selective area growth of GaAs nanowires on Si(111). Semicond. Sci. Technol. 2017, 32, 115003.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant Ge2224/2, R.B.L. acknowledges funding from the Alexander von Humboldt Foundation. We are grateful to Anne-Kathrin Bluhm for acquiring SEM images, to Michael Höricke and Carsten Stemmler as well as Arno Wirsig for technical support at the MBE system and to Bernd Drescher and Sander Rauwerdink for substrate preparation. We appreciate the critical reading of the manuscript by Patrick Vogt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanno Küpers.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Küpers, H., Lewis, R.B., Tahraoui, A. et al. Diameter evolution of selective area grown Ga-assisted GaAs nanowires. Nano Res. 11, 2885–2893 (2018). https://doi.org/10.1007/s12274-018-1984-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-1984-1

Keywords

Navigation