Nano Research

, Volume 11, Issue 6, pp 2970–2991 | Cite as

Magnetic labeling of natural lipid encapsulations with iron-based nanoparticles

  • Dewen Ye
  • Yan Li
  • Ning GuEmail author
Review Article


With superior biocompatibility and unique magnetic properties, iron-based nanoparticles (IBNP) are commonly encapsulated in cells and extracellular vesicles (EV) to allow for magnetic force controlled drug delivery and non-invasive tracking. Based on their natural source and similar morphology, we classify both cells and EVs as being natural lipid encapsulations (NLEs), distinguishing them from synthetic liposomes. Both their imaging contrast and drug effects are dominated by the amount of iron encapsulated in each NLE, demonstrating the importance of magnetic labeling efficiency. It is known that the membranes function as barriers to ensure that substances pass in and out in an orderly manner. The most important issue in increasing the cellular uptake of IBNPs is the interaction between the NLE membrane and IBNPs, which has been found to be affected by properties of the IBNPs as well as NLE heterogeneity. Two aspects are important for effective magnetic labelling: First, how to effectively drive membrane wrapping of the nanoparticles into the NLEs, and second, how to balance biosafety and nanoparticle uptake. In this review, we will provide a systematic overview of the magnetic labeling of NLEs with IBNPs. This article provides a summary of the applications of magnetically labeled NLEs and the labeling methods used for IBNPs. The review also analyzes the role of IBNPs physicochemical properties, especially their magnetic properties, and the heterogeneity of NLEs in the internalization pathway. At the same time, the future development of magnetically labeled NLEs is also discussed.


magnetic labeling iron-based nanoparticle (IBNP) natural lipid encapsulation(NLE) IBNP-membrane interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Basic Research Program of China (Nos. 2013CB733804 and 2013CB934400), the National Key Research and Development Program of China (No. 2017YFA0104301), the National Natural Science Foundation of China for Key Project of Inter-national Cooperation (No. 61420106012), and the Collaborative Innovation Center of Suzhou Nano Science and Technology (No. SX21400213).


  1. [1]
    Lin, C. L.; Ho, Y. S. A bibliometric analysis of publications on pluripotent stem cell research. Cell J. 2015, 17, 59–70.Google Scholar
  2. [2]
    Petrou, P.; Gothelf, Y.; Argov, Z.; Gotkine, M.; Levy, Y. S.; Kassis, I.; Vaknin-Dembinsky, A.; Ben-Hur, T.; Offen, D.; Abramsky, O. et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis results of phase 1/2 and 2A clinical trials. JAMA Neurol. 2016, 73, 337–344.CrossRefGoogle Scholar
  3. [3]
    Yáñez-Mó, M.; Siljander, P. R. M.; Andreu, Z.; Zavec, A. B.; Borràs, F. E.; Buzas, E. I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 4, 27066–27126.CrossRefGoogle Scholar
  4. [4]
    Chen, X.; Ba, Y.; Ma, L. J.; Cai, X.; Yin, Y.; Wang, K. H.; Guo, J. G.; Zhang, Y. J.; Chen, J. N.; Guo, X. et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006.CrossRefGoogle Scholar
  5. [5]
    Zaborowski, M. P.; Balaj, L.; Breakefield, X. O.; Lai, C. P. Extracellular vesicles: Composition, biological relevance, and methods of study. Bioscience 2015, 65, 783–797.CrossRefGoogle Scholar
  6. [6]
    Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.CrossRefGoogle Scholar
  7. [7]
    Riazifar, M.; Pone, E. J.; Lötvall, J.; Zhao, W. A. Stem cell extracellular vesicles: Extended messages of regeneration. Ann. Rev. Pharmacol. Toxicol. 2017, 57, 125–154.CrossRefGoogle Scholar
  8. [8]
    György, B.; Hung, M. E.; Breakefield, X. O.; Leonard, J. N. Therapeutic applications of extracellular vesicles: Clinical promise and open questions. Ann. Rev. Pharmacol. Toxicol. 2015, 55, 439–464.CrossRefGoogle Scholar
  9. [9]
    Chai, Z. L.; Hu, X. F.; Lu, W. Y. Cell membrane-coated nanoparticles for tumor-targeted drug delivery. Sci. China Mater. 2017, 60, 504–510.CrossRefGoogle Scholar
  10. [10]
    Calò, A.; Reguera, D.; Oncins, G.; Persuy, M. A.; Sanz, G.; Lobasso, S.; Corcelli, A.; Pajot-Augy, E.; Gomila, G. Force measurements on natural membrane nanovesicles reveal a composition-independent, high young’s modulus. Nanoscale 2014, 6, 2275–2285.CrossRefGoogle Scholar
  11. [11]
    Chen, O.; Riedemann, L.; Etoc, F.; Herrmann, H.; Coppey, M.; Barch, M.; Farrar, C. T.; Zhao, J.; Bruns, O. T.; Wei, H. et al. Magneto-fluorescent core-shell supernanoparticles. Nat. Commun. 2014, 5, 5093-5101.CrossRefGoogle Scholar
  12. [12]
    Key, J.; Leary, J. F. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int. J. Nanomedicine 2014, 9, 711–726.Google Scholar
  13. [13]
    Chen, B.; Li, Y.; Zhang, X. Q.; Liu, F.; Liu, Y. L.; Ji, M.; Xiong, F.; Gu, N. An efficient synthesis of ferumoxytol induced by alternating-current magnetic field. Mater. Lett. 2016, 170, 93–96.CrossRefGoogle Scholar
  14. [14]
    Duan, L.; Yang, F.; He, W.; Song, L. N.; Qiu, F.; Xu, N.; Xu, L.; Zhang, Y.; Hua, Z. C.; Gu, N. A multi-gradient targeting drug delivery system based on RGD-L-TRAIL-labeled magnetic microbubbles for cancer theranostics. Adv. Funct. Mater. 2016, 26, 8313–8324.CrossRefGoogle Scholar
  15. [15]
    Ma, X. X.; Tao, H. Q.; Yang, K.; Feng, L. Z.; Cheng, L.; Shi, X. Z.; Li, Y. G.; Guo, L.; Liu, Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012, 5, 199–212.CrossRefGoogle Scholar
  16. [16]
    Yigit, M. V.; Moore, A.; Medarova, Z. Magnetic nanoparticles for cancer diagnosis and therapy. Pharm. Res. 2012, 29, 1180–1188.CrossRefGoogle Scholar
  17. [17]
    Peer, D.; Karp, J. M.; Hong, S.; FaroKhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.CrossRefGoogle Scholar
  18. [18]
    Ding, Q.; Liu, D. F.; Guo, D. W.; Yang, F.; Pang, X. Y.; Che, R. C.; Zhou, N. Z.; Xie, J.; Sun, J. F.; Huang, Z. H. et al. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Biomaterials 2017, 124, 35–46.CrossRefGoogle Scholar
  19. [19]
    Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62, 90–99.CrossRefGoogle Scholar
  20. [20]
    Berman, S. M. C.; Walczak, P.; Bulte, J. W. M. Tracking stem cells using magnetic nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 343–355.CrossRefGoogle Scholar
  21. [21]
    Li, L.; Jiang, W.; Luo, K.; Song, H. M.; Lan, F.; Wu, Y.; Gu, Z. W. Superparamagnetic iron oxide nanoparticles as mri contrast agents for non-invasive stem cell labeling and tracking. Theranostics 2013, 3, 595–615.CrossRefGoogle Scholar
  22. [22]
    Prashant, C.; Dipak, M.; Yang, C. T.; Chuang, K. H.; Jun, D.; Feng, S. S. Superparamagnetic iron oxide-loaded poly(lactic acid)-D-α-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as mri contrast agent. Biomaterials 2010, 31, 5588–5597.CrossRefGoogle Scholar
  23. [23]
    Kircher, M. F.; Gambhir, S. S.; Grimm, J. Noninvasive cell-tracking methods. Nat. Rev. Clin. Oncol. 2011, 8, 677–688.CrossRefGoogle Scholar
  24. [24]
    Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244.CrossRefGoogle Scholar
  25. [25]
    Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.CrossRefGoogle Scholar
  26. [26]
    Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.CrossRefGoogle Scholar
  27. [27]
    Katagiri, K.; Imai, Y.; Koumoto, K.; Kaiden, T.; Kono, K.; Aoshima, S. Magnetoresponsive on-demand release of hybrid liposomes formed from Fe3O4 nanoparticles and thermosensitive block copolymers. Small 2011, 7, 1683–1689.CrossRefGoogle Scholar
  28. [28]
    Tassa, C.; Shaw, S. Y.; Weissleder, R. Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 2011, 44, 842–852.CrossRefGoogle Scholar
  29. [29]
    Silva, A. K. A.; Luciani, N.; Gazeau, F.; Aubertin, K.; Bonneau, S.; Chauvierre, C.; Letourneur, D.; Wilhelm, C. Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting. Nanomed.-Nanotechnol. Biol. Med. 2015, 11, 645–655.CrossRefGoogle Scholar
  30. [30]
    Tukmachev, D.; Lunov, O.; Zablotskii, V.; Dejneka, A.; Babic, M.; Syková, E.; Kubinová, Š. An effective strategy of magnetic stem cell delivery for spinal cord injury therapy. Nanoscale 2015, 7, 3954–3958.CrossRefGoogle Scholar
  31. [31]
    Penland, N.; Choi, E.; Perla, M.; Park, J.; Kim, D. H. Facile fabrication of tissue-engineered constructs using nanopatterned cell sheets and magnetic levitation. Nanotechnology 2017, 28, 075103–075111.CrossRefGoogle Scholar
  32. [32]
    Ho, V. H. B.; Müller, K. H.; Barcza, A.; Chen, R. J.; Slater, N. K. H. Generation and manipulation of magnetic multicellular spheroids. Biomaterials 2010, 31, 3095–3102.CrossRefGoogle Scholar
  33. [33]
    Ito, A.; Ino, K.; Hayashida, M.; Kobayashi, T.; Matsunuma, H.; Kagami, H.; Ueda, M.; Honda, H. Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng. 2005, 11, 1553–1561.CrossRefGoogle Scholar
  34. [34]
    Whatley, B. R.; Li, X. W.; Zhang, N.; Wen, X. J. Magnetic-directed patterning of cell spheroids. J. Biomed. Mater. Res. Part A 2014, 102, 1537–1547.CrossRefGoogle Scholar
  35. [35]
    Boehm-Sturm, P.; Mengler, L.; Wecker, S.; Hoehn, M.; Kallur, T. In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One 2011, 6, e29040–e29049.CrossRefGoogle Scholar
  36. [36]
    Daadi, M. M.; Li, Z. J.; Arac, A.; Grueter, B. A.; Sofilos, M.; Malenka, R. C.; Wu, J. C.; Steinberg, G. K. Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol. Ther. 2009, 17, 1282–1291.CrossRefGoogle Scholar
  37. [37]
    Silva, A. K. A.; Wilhelm, C.; Kolosnjaj-Tabi, J.; Luciani, N.; Gazeau, F. Cellular transfer of magnetic nanoparticles via cell microvesicles: Impact on cell tracking by magnetic resonance imaging. Pharm. Res. 2012, 29, 1392–1403.CrossRefGoogle Scholar
  38. [38]
    Kumari, S.; Swetha, M. G.; Mayor, S. Endocytosis unplugged: Multiple ways to enter the cell. Cell Res. 2010, 20, 256–275.CrossRefGoogle Scholar
  39. [39]
    Mooren, O. L.; Galletta, B. J.; Cooper, J. A. Roles for actin assembly in endocytosis. Annu. Rev. Biochem. 2012, 81, 661–686.CrossRefGoogle Scholar
  40. [40]
    Porat-Shliom, N.; Milberg, O.; Masedunskas, A.; Weigert, R. Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell. Mol. Life Sci. 2013, 70, 2099–2121.CrossRefGoogle Scholar
  41. [41]
    Lim, J. P.; Gleeson, P. A. Macropinocytosis: An endocytic pathway for internalising large gulps. Immunol. Cell Biol. 2011, 89, 836–843.CrossRefGoogle Scholar
  42. [42]
    de Vries, E.; Tscherne, D. M.; Wienholts, M. J.; Cobos-Jiménez, V.; Scholte, F.; García-Sastre, A.; Rottier, P. J. M.; de Haan, C. A. M. Dissection of the influenza a virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog. 2011, 7, e1001329-e1001348.CrossRefGoogle Scholar
  43. [43]
    Geiser, M. Update on macrophage clearance of inhaled micro-and nanoparticles. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, 207–217.CrossRefGoogle Scholar
  44. [44]
    Yameen, B.; Choi, W. I.; Vilos, C.; Swami, A.; Shi, J. J.; Farokhzad, O. C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 2014, 190, 485–499.CrossRefGoogle Scholar
  45. [45]
    Banerjee, A.; Berezhkovskii, A.; Nossal, R. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis. Phys. Biol. 2016, 13, 016005–016018.CrossRefGoogle Scholar
  46. [46]
    Harush-Frenkel, O.; Altschuler, Y.; Benita, S. Nanoparticle-cell interactions: Drug delivery implications. Crit. Rev. Ther. Drug Carr. Syst. 2008, 25, 485–544.CrossRefGoogle Scholar
  47. [47]
    Pelkmans, L.; Kartenbeck, J.; Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell Biol. 2001, 3, 473–483.CrossRefGoogle Scholar
  48. [48]
    Rodríguez, N. E.; Gaur, U.; Wilson, M. E. Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages. Cell Microbiol. 2006, 8, 1106–1120.CrossRefGoogle Scholar
  49. [49]
    Li, W.; Chen, C. Y.; Ye, C.; Wei, T. T.; Zhao, Y. L.; Lao, F.; Chen, Z.; Meng, H.; Gao, Y. X.; Yuan, H. et al. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 2008, 19, 145102.CrossRefGoogle Scholar
  50. [50]
    Bryant, L. H.; Kim, S. J.; Hobson, M.; Milo, B.; Kovacs, Z. I.; Jikaria, N.; Lewis, B. K.; Aronova, M. A.; Sousa, A. A.; Zhang, G. F. et al. Physicochemical characterization of ferumoxytol, heparin and protamine nanocomplexes for improvedmagnetic labeling of stem cells. Nanomed.-Nanotechnol. Biol. Med. 2017, 13, 503–513.CrossRefGoogle Scholar
  51. [51]
    Du, B. J.; Liu, J. H.; Ding, G. Y.; Han, X.; Li, D.; Wang, E. K.; Wang, J. Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. Nano Res. 2017, 10, 2280–2295.CrossRefGoogle Scholar
  52. [52]
    Candeloro, P.; Tirinato, L.; Malara, N.; Fregola, A.; Casals, E.; Puntes, V.; Perozziello, G.; Gentile, F.; Coluccio, M. L.; Das, G. et al. Nanoparticle microinjection and raman spectroscopy as tools for nanotoxicology studies. Analyst 2011, 136, 4402–4408.CrossRefGoogle Scholar
  53. [53]
    Walczak, P.; Ruiz-Cabello, J.; Kedziorek, D. A.; Gilad, A. A.; Lin, S. P.; Barnett, B.; Qin, L.; Levitsky, H.; Bulte, J. W. M. Magnetoelectroporation: Improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomed.-Nanotechnol. Biol. Med. 2006, 2, 89–94.CrossRefGoogle Scholar
  54. [54]
    Yang, F.; Li, M. X.; Cui, H. T.; Wang, T. T.; Chen, Z. W.; Song, L. N.; Gu, Z. X.; Zhang, Y.; Gu, N. Altering the response of intracellular reactive oxygen to magnetic nanoparticles using ultrasound and microbubbles. Sci. China. Mater. 2015, 58, 467–480.CrossRefGoogle Scholar
  55. [55]
    Lee, C. H.; Chen, C. B.; Chung, T. H.; Lin, Y. S.; Lee, W. C. Cellular uptake of protein-bound magnetic nanoparticles in pulsed magnetic field. J. Nanosci. Nanotechnol. 2010, 10, 7965–7970.CrossRefGoogle Scholar
  56. [56]
    Ye, D. W; Wang, Q. W; Zhang, W. G; Sun, J.F; Gu, N. Recent progress in magnetic labeling for stem cell, Chin. Sci. Bull. 2017, 62, 2301–2311.Google Scholar
  57. [57]
    Cui, Y. N.; Xu, Q. X.; Chow, P. K. H.; Wang, D. P.; Wang, C. H. Transferrin-conjugated magnetic silica plga nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 2013, 34, 8511–8520.CrossRefGoogle Scholar
  58. [58]
    Song, M.; Moon, W. K.; Kim, Y.; Lim, D.; Song, I. C.; Yoon, B. W. Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells: Comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Korean J. Radiol. 2007, 8, 365–371.CrossRefGoogle Scholar
  59. [59]
    Wang, C. H.; Qiao, L.; Zhang, Q.; Yan, H. S.; Liu, K. L. Enhanced cell uptake of superparamagnetic iron oxide nanoparticles through direct chemisorption of FITC-tat-PEG600-b-poly(glycerol monoacrylate). Int. J. Pharm. 2012, 430, 372–380.CrossRefGoogle Scholar
  60. [60]
    Andreas, K.; Georgieva, R.; Ladwig, M.; Mueller, S.; Notter, M.; Sittinger, M.; Ringe, J. Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 2012, 33, 4515–4525.CrossRefGoogle Scholar
  61. [61]
    Frank, J. A.; Miller, B. R.; Arbab, A. S.; Zywicke, H. A.; Jordan, E. K.; Lewis, B. K.; Bryant, L. H. Jr; Bulte, J. W. M. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 2003, 228, 480–487.CrossRefGoogle Scholar
  62. [62]
    Min, K. A.; Shin, M. C.; Yu, F. Q.; Yang, M. Z.; David, A. E.; Yang, V. C.; Rosania, G. R. Pulsed magnetic field improves the transport of iron oxide nanoparticles through cell barriers. ACS Nano 2013, 7, 2161–2171.CrossRefGoogle Scholar
  63. [63]
    Xie, D. H.; Qiu, B. S.; Walczak, P.; Li, X. B.; Ruiz-Cabello, J.; Minoshima, S.; Bulte, J. W. M.; Yang, X. M. Optimization of magnetosonoporation for stem cell labeling. NMR Biomed. 2010, 23, 480–484.CrossRefGoogle Scholar
  64. [64]
    Guduru, R.; Liang, P.; Runowicz, C.; Nair, M.; Atluri, V.; Khizroev, S. Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci. Rep. 2013, 3, 2953.CrossRefGoogle Scholar
  65. [65]
    Vats, N.; Wilhelm, C.; Rautou, P. E.; Poirier-Quinot, M.; Péchoux, C.; Devue, C.; Boulanger, C. M.; Gazeau, F. Magnetic tagging of cell-derived microparticles: New prospects for imaging and manipulation of these mediators of biological information. Nanomedicine 2010, 5, 727–738.CrossRefGoogle Scholar
  66. [66]
    Klein, S.; Sommer, A.; Distel, L. V. R.; Neuhuber, W.; Kryschi, C. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem. Biophys. Res. Common. 2012, 425, 393–397.CrossRefGoogle Scholar
  67. [67]
    Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.CrossRefGoogle Scholar
  68. [68]
    Geng, Y.; Dalhaimer, P.; Cai, S. S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249–255.CrossRefGoogle Scholar
  69. [69]
    Park, J. H.; von Maltzahn, G.; Zhang, L. L.; Schwartz, M. P.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater. 2008, 20, 1630–1635.CrossRefGoogle Scholar
  70. [70]
    Li, X.; Bao, M. M.; Weng, Y. Y.; Yang, K.; Zhang, W. D.; Chen, G. J. Glycopolymer-coated iron oxide nanoparticles: Shape-controlled synthesis and cellular uptake. J. Mat. Chem. B 2014, 2, 5569–5575.CrossRefGoogle Scholar
  71. [71]
    Ulrich, S.; Hirsch, C.; Diener, L.; Wick, P.; Rossi, R. M.; Bannwarth, M. B.; Boesel, L. F. Preparation of ellipsoid-shaped supraparticles with modular compositions and investigation of shape-dependent cell-uptake. RSC Adv. 2016, 6, 89028–89039.CrossRefGoogle Scholar
  72. [72]
    Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.CrossRefGoogle Scholar
  73. [73]
    Sherwood, J.; Lovas, K.; Rich, M.; Yin, Q.; Lackey, K.; Bolding, M. S.; Bao, Y. Shape-dependent cellular behaviors and relaxivity of iron oxide-based T1MRI contrast agents. Nanoscale 2016, 8, 17506–17515.CrossRefGoogle Scholar
  74. [74]
    Sun, Z. Z.; Worden, M.; Wroczynskyj, Y.; Manna, P. K.; Thliveris, J. A.; van Lierop, J.; Hegmann, T.; Miller, D. W. Differential internalization of brick shaped iron oxide nanoparticles by endothelial cells. J. Mat. Chem. B 2016, 4, 5913–5920.CrossRefGoogle Scholar
  75. [75]
    Yu, S. S.; Lau, C. M.; Thomas, S. N.; Jerome, W. G.; Maron, D. J.; Dickerson, J. H.; Hubbell, J. A.; Giorgio, T. D. Size-and charge-dependent non-specific uptake of pegylated nanoparticles by macrophages. Int. J. Nanomedicine 2012, 7, 799–813.CrossRefGoogle Scholar
  76. [76]
    Trekker, J.; Leten, C.; Struys, T.; Lazenka, V. V.; Argibay, B.; Micholt, L.; Lambrichts, I.; Van Roy, W.; Lagae, L.; Himmelreich, U. Sensitive in vivo cell detection using size-optimized superparamagnetic nanoparticles. Biomaterials 2014, 35, 1627–1635.CrossRefGoogle Scholar
  77. [77]
    Jun, Y. W.; Huh, Y. M.; Choi, J. S.; Lee, J. H.; Song, H. T.; Kim, S.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S. et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 2005, 127, 5732–5733.CrossRefGoogle Scholar
  78. [78]
    Jun, Y. W.; Lee, J. H.; Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem., Int. Ed. 2008, 47, 5122–5135.CrossRefGoogle Scholar
  79. [79]
    Tanimoto, A.; Kuribayashi, S. Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma. Eur. J. Radiol. 2006, 58, 200–216.CrossRefGoogle Scholar
  80. [80]
    Huang, J.; Bu, L. H.; Xie, J.; Chen, K.; Cheng, Z.; Li, X. G.; Chen, X. Y. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 2010, 4, 7151–7160.CrossRefGoogle Scholar
  81. [81]
    He, C. B.; Hu, Y. P.; Yin, L. C.; Tang, C.; Yin, C. H. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657–3666.CrossRefGoogle Scholar
  82. [82]
    Mendes, R. G.; Koch, B.; Bachmatiuk, A.; El-Gendy, A. A.; Krupskaya, Y.; Springer, A.; Klingeler, R.; Schmidt, O.; Buchner, B.; Sanchez, S. et al. Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions. Biochim. Biophys. Acta-Gen. Subj. 2014, 1840, 160–169.CrossRefGoogle Scholar
  83. [83]
    Shang, L.; Nienhaus, K.; Nienhaus, G. U. Engineered nanoparticles interacting with cells: Size matters. J. Nanobiotechnol. 2014, 12, 5–16.CrossRefGoogle Scholar
  84. [84]
    Sun, R.; Dittrich, J.; Le-Huu, M.; Mueller, M. M.; Bedke, J.; Kartenbeck, J.; Lehmann, W. D.; Krueger, R.; Bock, M.; Huss, R. et al. Physical and biological characterization of superparamagnetic iron oxide-and ultrasmall superparamagnetic iron oxide-labeled cells -a comparison. Invest. Radiol. 2005, 40, 504–513.CrossRefGoogle Scholar
  85. [85]
    Jo, J.; Aoki, I.; Tabata, Y. Design of iron oxide nanoparticles with different sizes and surface charges for simple and efficient labeling of mesenchymal stem cells. J. Control. Release 2010, 142, 465–473.CrossRefGoogle Scholar
  86. [86]
    Yuan, H. Y.; Li, J.; Bao, G.; Zhang, S. L. Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys. Rev. Lett. 2010, 105, 138101–138105.CrossRefGoogle Scholar
  87. [87]
    Zhang, S. L.; Gao, H. J.; Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 2015, 9, 8655–8671.CrossRefGoogle Scholar
  88. [88]
    Deserno, M.; Bickel, T. Wrapping of a spherical colloid by a fluid membrane. Europhys. Lett. 2003, 62, 767–774.CrossRefGoogle Scholar
  89. [89]
    Lin, X. B.; Li, Y.; Gu, N. Nanoparticle’s size effect on its translocation across a lipid bilayer: A molecular dynamics simulation. J. Comput. Theor. Nanosci. 2010, 7, 269–276.CrossRefGoogle Scholar
  90. [90]
    Gal, N.; Lassenberger, A.; Herrero-Nogareda, L.; Scheberl, A.; Charwat, V.; Kasper, C.; Reimhult, E. Interaction of size-tailored pegylated iron oxide nanoparticles with lipid membranes and cells. ACS Biomater. Sci. Eng. 2017, 3, 249–259.CrossRefGoogle Scholar
  91. [91]
    Hu, Z. Y.; Zhang, H. Y.; Zhang, Y.; Wu, R. A.; Zou, H. F. Nanoparticle size matters in the formation of plasma protein coronas on Fe3O4 nanoparticles. Colloid Surf. B-Biointerfaces 2014, 121, 354–361.CrossRefGoogle Scholar
  92. [92]
    Mahmoudi, M.; Sheibani, S.; Milani, A. S.; Rezaee, F.; Gauberti, M.; Dinarvand, R.; Vali, H. Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine 2015, 10, 215–226.CrossRefGoogle Scholar
  93. [93]
    Punnakitikashem, P.; Chang, S. H.; Huang, C. W.; Liu, J. P.; Hao, Y. W. Design and fabrication of non-superparamagnetic high moment magnetic nanoparticles for bioapplications. J. Nanopart. Res. 2010, 12, 1101–1106.CrossRefGoogle Scholar
  94. [94]
    Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Anarjan, N.; Vaghari, H.; Sayyar, Z.; Berenjian, A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res. 2016, 9, 2203–2225.CrossRefGoogle Scholar
  95. [95]
    Hamley, I. W. Nanotechnology with soft materials. Angew. Chem., Int. Ed. 2003, 42, 1692–1712.CrossRefGoogle Scholar
  96. [96]
    Fayol, D.; Luciani, N.; Lartigue, L.; Gazeau, F.; Wilhelm, C. Managing magnetic nanoparticle aggregation and cellular uptake: A precondition for efficient stem-cell differentiation and mri tracking. Adv. Healthc. Mater. 2013, 2, 313–325.CrossRefGoogle Scholar
  97. [97]
    Safi, M.; Sarrouj, H.; Sandre, O.; Mignet, N.; Berret, J. F. Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: The role of the coating and aggregation state. Nanotechnology 2010, 21, 145103–145113.CrossRefGoogle Scholar
  98. [98]
    Bae, J. E.; Huh, M. I.; Ryu, B. K.; Do, J. Y.; Jin, S. U.; Moon, M. J.; Jung, J. C.; Chang, Y.; Kim, E.; Chi, S. G. et al. The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles. Biomaterials 2011, 32, 9401–9414.CrossRefGoogle Scholar
  99. [99]
    Herve, K.; Douziech-Eyrolles, L.; Munnier, E.; Cohen-Jonathan, S.; Soucé, M.; Marchais, H.; Limelette, P.; Warmont, F.; Saboungi, M. L.; Dubois, P. et al. The development of stable aqueous suspensions of pegylated spions for biomedical applications. Nanotechnology 2008, 19, 465608–465615.CrossRefGoogle Scholar
  100. [100]
    Gillich, T.; Acikgoz, C.; Isa, L.; Schluter, A. D.; Spencer, N. D.; Textor, M. Peg-stabilized core-shell nanoparticles: Impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation. ACS Nano 2013, 7, 316–329.CrossRefGoogle Scholar
  101. [101]
    Mornet, S.; Portier, J.; Duguet, E. A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J. Magn. Magn. Mater. 2005, 293, 127–134.CrossRefGoogle Scholar
  102. [102]
    Duan, H. W.; Kuang, M.; Wang, X. X.; Wang, Y. A.; Mao, H.; Nie, S. M. Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: New insights into spin disorder and proton relaxivity. J. Phys. Chem. C 2008, 112, 8127–8131.CrossRefGoogle Scholar
  103. [103]
    Zhao, X. Q.; Shang, T.; Zhang, X. D.; Ye, T.; Wang, D. J.; Rei, L. Passage of magnetic tat-conjugated Fe3O4@SiO2 nanoparticles across in vitro blood-brain barrier. Nanoscale Res. Lett. 2016, 11, 451–463.CrossRefGoogle Scholar
  104. [104]
    Zhang, J.; Chen, Y. C.; Li, X.; Liang, X. L.; Luo, X. J. The influence of different long-circulating materials on the pharmacokinetics of liposomal vincristine sulfate. Int. J. Nanomed. 2016, 11, 4187–4197.CrossRefGoogle Scholar
  105. [105]
    Mosqueira, V. C. F.; Legrand, P.; Morgat, J. L.; Vert, M.; Mysiakine, E.; Gref, R.; Devissaguet, J. P.; Barratt, G. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: Effects of peg chain length and density. Pharm. Res. 2001, 18, 1411–1419.CrossRefGoogle Scholar
  106. [106]
    Mohamed, S. A.; Al-Harbi, M. H.; Almulaiky, Y. Q.; Ibrahim, I. H.; El-Shishtawy, R. M. Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles. Electron. J. Biotechnol. 2017, 27, 84–90.CrossRefGoogle Scholar
  107. [107]
    Ahn, J.; Moon, D. S.; Lee, J. K. Arsonic acid as a robust anchor group for the surface modification of Fe3O4. Langmuir 2013, 29, 14912–14918.CrossRefGoogle Scholar
  108. [108]
    Park, J.; Kadasala, N. R.; Abouelmagd, S. A.; Castanares, M. A.; Collins, D. S.; Wei, A.; Yeo, Y. Polymer-iron oxide composite nanoparticles for epr-independent drug delivery. Biomaterials 2016, 101, 285–295.CrossRefGoogle Scholar
  109. [109]
    Dowaidar, M.; Abdelhamid, H. N.; Hällbrink, M.; Freimann, K.; Kurrikoff, K.; Zou, X. D.; Langel, Ü. Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonu-cleotides complexes for gene delivery. Sci. Rep. 2017, 7, 9159–9170.CrossRefGoogle Scholar
  110. [110]
    Gao, L. P.; Yu, J.; Liu, Y.; Zhou, J. E.; Sun, L.; Wang, J.; Zhu, J. Z.; Peng, H.; Lu, W. Y.; Yu, L. et al. Tumor-penetrating peptide conjugated and doxorubicin loaded T1-T2 dual mode mri contrast agents nanoparticles for tumor theranostics. Theranostics 2018, 8, 92–108.CrossRefGoogle Scholar
  111. [111]
    Li, X. M.; Ding, L. Y.; Xu, Y. L.; Wang, Y. L.; Ping, Q. N. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int. J. Pharm. 2009, 373, 116–123.CrossRefGoogle Scholar
  112. [112]
    Stähl, S.; Gräslund, T.; Karlström, A. E.; Frejd, F. Y.; Nygren, P. Ä.; Löfblom, J. Affibody molecules in biotechnological and medical applications. Trends Biotechnol. 2017, 35, 691–712.CrossRefGoogle Scholar
  113. [113]
    Chai, Z. L.; Hu, X. F.; Wei, X. L.; Zhan, C. Y.; Lu, L. W.; Jiang, K.; Su, B. X.; Ruan, H. T.; Ran, D. N.; Fang, R. H. et al. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J. Control. Release 2017, 264, 102–111.CrossRefGoogle Scholar
  114. [114]
    Osaka, T.; Nakanishi, T.; Shanmugam, S.; Takahama, S.; Zhang, H. Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloid Surf. B-Biointerfaces 2009, 71, 325–330.CrossRefGoogle Scholar
  115. [115]
    Wang, X. Q.; Zhang, H. R.; Jing, H. J.; Cui, L. Q. Highly efficient labeling of human lung cancer cells using cationic poly-L-lysine-assisted magnetic iron oxide nanoparticles. Nano-Micro Lett. 2015, 7, 374–384.CrossRefGoogle Scholar
  116. [116]
    Bull, E.; Madani, S. Y.; Sheth, R.; Seifalian, A.; Green, M.; Seifalian, A. M. Stem cell tracking using iron oxide nanoparticles. Int. J. Nanomed. 2014, 9, 1641–1653.Google Scholar
  117. [117]
    Santhosh, P. B.; Velikonja, A.; Perutkova, Š.; Gongadze, E.; Kulkarni, M.; Genova, J.; Eleršič, K.; Iglič, A.; Kralj-Iglič, V.; Ulrih, N. P. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity. Chem. Phys. Lipids 2014, 178, 52–62.CrossRefGoogle Scholar
  118. [118]
    Lin, J. Q.; Zhang, H. W.; Chen, Z.; Zheng, Y. G. Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 2010, 4, 5421–5429.CrossRefGoogle Scholar
  119. [119]
    Nangia, S.; Sureshkumar, R. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir 2012, 28, 17666–17671.CrossRefGoogle Scholar
  120. [120]
    Li, S.; Malmstadt, N. Deformation and poration of lipid bilayer membranes by cationic nanoparticles. Soft Matter 2013, 9, 4969–4976.CrossRefGoogle Scholar
  121. [121]
    Deen, W. M.; Bohrer, M. P.; Epstein, N. B. Effects of molecular size and configuration on diffusion in microporous membranes. AIChE J. 1981, 27, 952–959.CrossRefGoogle Scholar
  122. [122]
    Hong, S. P.; Leroueil, P. R.; Janus, E. K.; Peters, J. L.; Kober, M. M.; Islam, M. T.; Orr, B. G.; Baker, J. R.; Holl, M. M. B. Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability. Bioconjugate Chem. 2006, 17, 728–734.CrossRefGoogle Scholar
  123. [123]
    Wang, T. T.; Bai, J.; Jiang, X.; Nienhaus, G. U. Cellular uptake of nanoparticles by membrane penetration: A study combining confocal microscopy with ftir spectroelectrochemistry. ACS Nano 2012, 6, 1251–1259.CrossRefGoogle Scholar
  124. [124]
    Han, X.; Deng, Z. C.; Yang, Z.; Wang, Y. L.; Zhu, H. H.; Chen, B. D.; Cui, Z.; Ewing, R. C.; Shi, D. L. Biomarkerless targeting and photothermal cancer cell killing by surface-electrically-charged superparamagnetic Fe3O4 composite nanoparticles. Nanoscale 2017, 9, 1457–1465.CrossRefGoogle Scholar
  125. [125]
    Pu, L.; Xu, J. B.; Sun, Y. M.; Fang, Z.; Chan-Park, M. B.; Duan, H. W. Cationic polycarbonate-grafted superparamagnetic nanoparticles with synergistic dual-modality antimicrobial activity. Biomater. Sci. 2016, 4, 871–879.CrossRefGoogle Scholar
  126. [126]
    Sakulkhu, U.; Mahmoudi, M.; Maurizi, L.; Coullerez, G.; Hofmann-Amtenbrink, M.; Vries, M.; Motazacker, M.; Rezaee, F.; Hofmann, H. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomater. Sci. 2015, 3, 265–278.CrossRefGoogle Scholar
  127. [127]
    Fleischer, C. C.; Payne, C. K. Nanoparticle-cell interactions: Molecular structure of the protein corona and cellular outcomes. Acc. Chem. Res. 2014, 47, 2651–2659.CrossRefGoogle Scholar
  128. [128]
    Carter, D. C.; Ho, J. X. Structure of serum-albumin. Adv. Protein Chem. 1994, 45, 153–203.CrossRefGoogle Scholar
  129. [129]
    Mu, Q. X.; Li, Z. W.; Li, X.; Mishra, S. R.; Zhang, B.; Si, Z. K.; Yang, L.; Jiang, W.; Yan, B. Characterization of protein clusters of diverse magnetic nanoparticles and their dynamic interactions with human cells. J. Phys. Chem. C 2009, 113, 5390–5395.CrossRefGoogle Scholar
  130. [130]
    Serda, R. E.; Blanco, E.; Mack, A.; Stafford, S. J.; Amra, S.; Li, Q. P.; van de Ven, A.; Tanaka, T.; Torchilin, V. P.; Wiktorowicz, J. E. et al. Proteomic analysis of serum opsonins impacting biodistribution and cellular association of porous silicon microparticles. Mol. Imaging 2011, 10, 43–55.CrossRefGoogle Scholar
  131. [131]
    McConnell, K. I.; Shamsudeen, S.; Meraz, I. M.; Mahadevan, T. S.; Ziemys, A.; Rees, P.; Summers, H. D.; Serda, R. E. Reduced cationic nanoparticle cytotoxicity based on serum masking of surface potential. J. Biomed. Nanotechnol. 2016, 12, 154–164.CrossRefGoogle Scholar
  132. [132]
    Babič, M.; Horák, D.; Trchová, M.; Jendelová, P.; Glogarová, K.; Lesný, P.; Herynek, V.; Hájek, M.; Syková, E. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chem. 2008, 19, 740–750.CrossRefGoogle Scholar
  133. [133]
    Kokkinopoulou, M.; Simon, J.; Landfester, K.; Mailänder, V.; Lieberwirth, I. Visualization of the protein corona: Towards a biomolecular understanding of nanoparticle-cell-interactions. Nanoscale 2017, 9, 8858–8870.CrossRefGoogle Scholar
  134. [134]
    Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R. H. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloid Surf. B-Biointerfaces 2000, 18, 301–313.CrossRefGoogle Scholar
  135. [135]
    Ritz, S.; Schöttler, S.; Kotman, N.; Baier, G.; Musyanovych, A.; Kuharev, J.; Landfester, K.; Schild, H.; Jahn, O.; Tenzer, S. et al. Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake. Biomacromolecules 2015, 16, 1311–1321.CrossRefGoogle Scholar
  136. [136]
    Rogers, W. J.; Basu, P. Factors regulating macrophage endocytosis of nanoparticles: Implications for targeted magnetic resonance plaque imaging. Atherosclerosis 2005, 178, 67–73.CrossRefGoogle Scholar
  137. [137]
    Ayala, V.; Herrera, A. P.; Latorre-Esteves, M.; Torres-Lugo, M.; Rinaldi, C. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. J. Nanopart. Res. 2013, 15, 2180–2186.CrossRefGoogle Scholar
  138. [138]
    Ge, Y. Q.; Zhang, Y.; Xia, J. G.; Ma, M.; He, S. Y.; Nie, F.; Gu, N. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on kb cellular uptake in vitro. Colloid Surf. B-Biointerfaces 2009, 73, 294–301.CrossRefGoogle Scholar
  139. [139]
    Jahn, M. R.; Nawroth, T.; Fütterer, S.; Wolfrum, U.; Kolb, U.; Langguth, P. Iron oxide/hydroxide nanoparticles with negatively charged shells show increased uptake in CaCO-2 cells. Mol. Pharmaceutics 2012, 9, 1628–1637.CrossRefGoogle Scholar
  140. [140]
    Xu, Y. L.; Sherwood, J. A.; Lackey, K. H.; Qin, Y.; Bao, Y. P. The responses of immune cells to iron oxide nanoparticles. J. Appl. Toxicol. 2016, 36, 543–553.CrossRefGoogle Scholar
  141. [141]
    Srivastava, I.; Misra, S. K.; Ostadhossein, F.; Daza, E.; Singh, J.; Pan, D. Surface chemistry of carbon nanoparticles functionally select their uptake in various stages of cancer cells. Nano Res. 2017, 10, 3269–3284.CrossRefGoogle Scholar
  142. [142]
    Yang, Y.; Wang, Q. Q.; Song, L. N.; Liu, X.; Zhao, P.; Zhang, F. M.; Gu, N.; Sun, J. F. Uptake of magnetic nanoparticles for adipose-derived stem cells with multiple passage numbers. Sci. China. Mater. 2017, 60, 892–902.CrossRefGoogle Scholar
  143. [143]
    Wahajuddin; Arora, S. Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine 2012, 7, 3445–3471.CrossRefGoogle Scholar
  144. [144]
    Lu, Y. C.; Chang, F. Y.; Tu, S. J.; Chen, J. P.; Ma, Y. H. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement. J. Magn. Magn. Mater. 2017, 427, 71–80.CrossRefGoogle Scholar
  145. [145]
    Widder, K. J.; Senyei, A. E.; Scarpelli, D. G. Magnetic microspheres–A model system for site specific drug delivery in vivo. Exp. Biol. Med. 1978, 158, 141–146.CrossRefGoogle Scholar
  146. [146]
    Lamkowsky, M. C.; Geppert, M.; Schmidt, M. M.; Dringen, R. Magnetic field-induced acceleration of the accumulation of magnetic iron oxide nanoparticles by cultured brain astrocytes. J. Biomed. Mater. Res. Part A 2012, 100A, 323–334.CrossRefGoogle Scholar
  147. [147]
    MacDonald, C.; Barbee, K.; Polyak, B. Force dependent internalization of magnetic nanoparticles results in highly loaded endothelial cells for use as potential therapy delivery vectors. Pharm. Res. 2012, 29, 1270–1281.CrossRefGoogle Scholar
  148. [148]
    Barnes, A. L.; Wassel, R. A.; Mondalek, F.; Chen, K. J.; Dormer, K. J.; Kopke, R. D. Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes. BioMagnetic Res. Technol. 2007, 5, 1.CrossRefGoogle Scholar
  149. [149]
    Chaudhary, S.; Smith, C. A.; del Pino, P.; de la Fuente, J. M.; Mullin, M.; Hursthouse, A.; Stirling, D.; Berry, C. C. Elucidating the function of penetratin and a static magnetic field in cellular uptake of magnetic nanoparticles. Pharma-ceuticals 2013, 6, 204–222.CrossRefGoogle Scholar
  150. [150]
    Towhidi, L.; Firoozabadi, S. M. P.; Mozdarani, H.; Miklavcic, D. Lucifer yellow uptake by CHO cells exposed to magnetic and electric pulses. Radiol. Oncol. 2012, 46, 119–125.CrossRefGoogle Scholar
  151. [151]
    Chen, C. B.; Chen, J. Y.; Lee, W. C. Fast transfection of mammalian cells using superparamagnetic nanoparticles under strong magnetic field. J. Nanosci. Nanotechnol. 2009, 9, 2651–2659.CrossRefGoogle Scholar
  152. [152]
    Antov, Y.; Barbul, A.; Mantsur, H.; Korenstein, R. Electroendocytosis: Exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys. J. 2005, 88, 2206–2223.CrossRefGoogle Scholar
  153. [153]
    Mahrour, N.; Pologea-Moraru, R.; Moisescu, M. G.; Orlowski, S.; Levêque, P.; Mir, L. M. In vitro increase of the fluid-phase endocytosis induced by pulsed radiofrequency electromagnetic fields: Importance of the electric field component. Biochim. Biophys. Acta-Biomembr. 2005, 1668, 126–137.CrossRefGoogle Scholar
  154. [154]
    Novickij, V.; Grainys, A.; Novickij, J.; Markovskaja, S. Irreversible magnetoporation of micro-organisms in high pulsed magnetic fields. IET Nanobiotechnol. 2014, 8, 157–162.CrossRefGoogle Scholar
  155. [155]
    Novickij, V.; Grainys, A.; Švediene, J.; Markovskaja, S.; Paškevičius, A.; Novickij, J. Microsecond pulsed magnetic field improves efficacy of antifungal agents on pathogenic microorganisms. Bioelectromagnetics 2014, 35, 347–353.CrossRefGoogle Scholar
  156. [156]
    Zhang, Z. H.; Lin, X. B.; Gu, N. Effects of temperature and peg grafting density on the translocation of pegylated nanoparticles across asymmetric lipid membrane. Colloid Surf. B-Biointerfaces 2017, 160, 92–100.CrossRefGoogle Scholar
  157. [157]
    Mailänder, V.; Lorenz, M. R.; Holzapfel, V.; Musyanovych, A.; Fuchs, K.; Wiesneth, M.; Walther, P.; Landfester, K.; Schrezenmeier, H. Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol. Imaging Biol. 2008, 10, 138–146.CrossRefGoogle Scholar
  158. [158]
    Gal, N.; Massalha, S.; Samuelly-Nafta, O.; Weihs, D. Effects of particle uptake, encapsulation, and localization in cancer cells on intracellular applications. Med. Eng. Phys. 2015, 37, 478–483.CrossRefGoogle Scholar
  159. [159]
    Perevedentseva, E.; Hong, S. F.; Huang, K. J.; Chiang, I. T.; Lee, C. Y.; Tseng, Y. T.; Cheng, C. L. Nanodiamond internalization in cells and the cell uptake mechanism. J. Nanopart. Res. 2013, 15, 1834–1846.CrossRefGoogle Scholar
  160. [160]
    Srinivasan, A. R.; Lakshmikuttyamma, A.; Shoyele, S. A. Investigation of the stability and cellular uptake of self-associated monoclonal antibody (MAb) nanoparticles by non-small lung cancer cells. Mol. Pharmaceutics 2013, 10, 3275–3284.CrossRefGoogle Scholar
  161. [161]
    Rappoport, J. Z.; Simon, S. M. Endocytic trafficking of activated egfr is AP-2 dependent and occurs through preformed clathrin spots. J. Cell Sci. 2009, 122, 1301–1305.CrossRefGoogle Scholar
  162. [162]
    Kawauchi, T. Cell adhesion and its endocytic regulation in cell migration during neural development and cancer metastasis. Int. J. Mol. Sci. 2012, 13, 4564–4590.CrossRefGoogle Scholar
  163. [163]
    Bitsikas, V.; Corrêa, I. R. Jr.; Nichols, B. J. Clathrin-indepen-dent pathways do not contribute significantly to endocytic flux. eLife 2014, 3, e03970–e03996.CrossRefGoogle Scholar
  164. [164]
    Yalçin, S.; Özluer, Ö.; Gündüz, U. Nanoparticle-based drug delivery in cancer: The role of cell membrane structures. Ther. Deliv. 2016, 7, 773–781.CrossRefGoogle Scholar
  165. [165]
    Sahay, G.; Kim, J. O.; Kabanov, A. V.; Bronich, T. K. The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents. Biomaterials 2010, 31, 923–933.CrossRefGoogle Scholar
  166. [166]
    Sigismund, S.; Confalonieri, S.; Ciliberto, A.; Polo, S.; Scita, G.; Di Fiore, P. P. Endocytosis and signaling: Cell logistics shape the eukaryotic cell plan. Physiol. Rev. 2012, 92, 273–366.CrossRefGoogle Scholar
  167. [167]
    Zink, D.; Fischer, A. H.; Nickerson, J. A. Nuclear structure in cancer cells. Nat. Rev. Cancer 2004, 4, 677–687.CrossRefGoogle Scholar
  168. [168]
    Lekka, M.; Pogoda, K.; Gostek, J.; Klymenko, O.; Prauzner-Bechcicki, S.; Wiltowska-Zuber, J.; Jaczewska, J.; Lekki, J.; Stachura, Z. Cancer cell recognition–Mechanical phenotype. Micron 2012, 43, 1259–1266.CrossRefGoogle Scholar
  169. [169]
    Alibert, C.; Goud, B.; Manneville, J. B. Are cancer cells really softer than normal cells? Biol. Cell 2017, 109, 167–189.CrossRefGoogle Scholar
  170. [170]
    Hall, A. The cytoskeleton and cancer. Cancer Metastasis Rev. 2009, 28, 5–14.CrossRefGoogle Scholar
  171. [171]
    Grady, M. E.; Composto, R. J.; Eckmann, D. M. Cell elasticity with altered cytoskeletal architectures across multiple cell types. J. Mech. Behav. Biomed. 2016, 61, 197–207.CrossRefGoogle Scholar
  172. [172]
    Yilmaz, M.; Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009, 28, 15–33.CrossRefGoogle Scholar
  173. [173]
    Elkhatib, N.; Bresteau, E.; Baschieri, F.; Rioja, A. L.; van Niel, G.; Vassilopoulos, S.; Montagnac, G. Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science 2017, 356, 1138–1148.CrossRefGoogle Scholar
  174. [174]
    Subra, C.; Grand, D.; Laulagnier, K.; Stella, A.; Lambeau, G.; Paillasse, M.; De Medina, P.; Monsarrat, B.; Perret, B.; Silvente-Poirot, S. et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J. Lipid Res. 2010, 51, 2105–2120.CrossRefGoogle Scholar
  175. [175]
    Vlassov, A. V.; Magdaleno, S.; Setterquist, R.; Conrad, R. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta-Gen. Subj. 2012, 1820, 940–948.CrossRefGoogle Scholar
  176. [176]
    Kourembanas, S. Exosomes: Vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu. Rev. Physiol. 2015, 77, 13–27.CrossRefGoogle Scholar
  177. [177]
    Naqvi, S.; Samim, M.; Abdin, M.; Ahmed, F. J.; Maitra, A.; Prashant, C.; Dinda, A. K. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomedinice 2010, 5, 983–989.CrossRefGoogle Scholar
  178. [178]
    Hu, L. Z.; Wickline, S. A.; Hood, J. L. Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn. Reson. Med. 2015, 74, 266–271.CrossRefGoogle Scholar
  179. [179]
    Gould, S. J.; Raposo, G. As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2013, 2. 20389–20391.CrossRefGoogle Scholar
  180. [180]
    Jovic, M.; Sharma, M.; Rahajeng, J.; Caplan, S. The early endosome: A busy sorting station for proteins at the crossroads. Histol. Histopathol. 2010, 25, 99–112.Google Scholar
  181. [181]
    Busato, A.; Bonafede, R.; Bontempi, P.; Scambi, I.; Schiaffino, L.; Benati, D.; Malatesta, M.; Sbarbati, A.; Marzola, P.; Mariotti, R. Magnetic resonance imaging of ultrasmall superparamagnetic iron oxide-labeled exosomes from stem cells: A new method to obtain labeled exosomes. Int. J. Nanomedicine 2016, 11, 2481–2490.Google Scholar
  182. [182]
    Busato, A.; Bonafede, R.; Bontempi, P.; Scambi, I.; Schiaffino, L.; Benati, D.; Malatesta, M.; Sbarbati, A.; Marzola, P.; Mariotti, R. Labeling and magnetic resonance imaging of exosomes isolated from adipose stem cells. Curr. Protoc. Cell Biol. 2017, 75, 1–15.Google Scholar
  183. [183]
    Zhao, J. Y.; Chen, G.; Gu, Y. P.; Cui, R.; Zhang, Z. L.; Yu, Z. L.; Tang, B.; Zhao, Y. F.; Pang, D. W. Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles. J. Am. Chem. Soc. 2016, 138, 1893–1903.CrossRefGoogle Scholar
  184. [184]
    Grange, C.; Tapparo, M.; Bruno, S.; Chatterjee, D.; Quesenberry, P. J.; Tetta, C.; Camussi, G. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int. J. Mol. Med. 2014, 33, 1055–1063.CrossRefGoogle Scholar
  185. [185]
    Zhu, L.; Dong, D.; Yu, Z. L.; Zhao, Y. F.; Pang, D. W.; Zhang, Z. L. Folate-engineered microvesicles for enhanced target and synergistic therapy toward breast cancer. ACS Appl. Mater. Interfaces 2017, 9, 5100–5108.CrossRefGoogle Scholar
  186. [186]
    Ridder, K.; Keller, S.; Dams, M.; Rupp, A. K.; Schlaudraff, J.; Del Turco, D.; Starmann, J.; Macas, J.; Karpova, D.; Devraj, K. et al. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol. 2014, 12, e1001874–e1001889.CrossRefGoogle Scholar
  187. [187]
    Feng, D.; Zhao, W. L.; Ye, Y. Y.; Bai, X. C.; Liu, R. Q.; Chang, L. F.; Zhou, Q.; Sui, S. F. Cellular internalization of exosomes occurs through phagocytosis. Traffic 2010, 11, 675–687.CrossRefGoogle Scholar
  188. [188]
    Nanbo, A.; Kawanishi, E.; Yoshida, R.; Yoshiyama, H. Exosomes derived from epstein-barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J. Virol. 2013, 87, 10334–10347.CrossRefGoogle Scholar
  189. [189]
    Christianson, H. C.; Svensson, K. J.; van Kuppevelt, T. H.; Li, J. P.; Belting, M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc. Natl. Acad. Sci. USA 2013, 110, 17380–17385.CrossRefGoogle Scholar
  190. [190]
    Macario, A. J. L.; Cappello, F.; Zummo, G.; de Macario, E. C. Chaperonopathies of senescence and the scrambling of interactions between the chaperoning and the immune systems. Ann. NY Acad. Sci. 2010, 1197, 85–93.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical EngineeringSoutheast UniversityNanjingChina
  2. 2.Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhouChina

Personalised recommendations