Skip to main content
Log in

Ultra-small Pd clusters supported by chitin nanowires as highly efficient catalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

For the first time, chitin microspheres woven from nanowires with multi-scale porous structures were used as an excellent support for a catalyst of ultra-small Pd clusters. The Pd species anchored on the precursor Pre-Pd@chitin were 0.6 nm in average size, while the reduced catalyst Red-Pd@chitin featured ultra-small particles of 1.3 nm in average size. X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) demonstrated that the Pd catalyst in both oxidative and reductive states retained good dispersity and ultra-small clusters. The catalyst was tested for the hydrogenation of p-nitroanisole, exhibiting an excellent initial rate (13× that of commercial Pd/C)and excellent turnover frequency reaching 52,000 h−1. Furthermore, the catalyst could be recycled and used more than 10 times with no decay of the catalytic activity, suggesting potential industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark, J. H. Green chemistry: Challenges and opportunities. Green Chem. 1999, 1, 1–8.

    Article  Google Scholar 

  2. Poliakoff, M.; Licence, P. Sustainable technology: Green chemistry. Nature 2007, 450, 810–812.

    Article  Google Scholar 

  3. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    Article  Google Scholar 

  4. Yan, H.; Cheng, H.; Yi, H.; Lin Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.

    Article  Google Scholar 

  5. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–801.

    Article  Google Scholar 

  6. Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825–1837.

    Article  Google Scholar 

  7. Zhai, Y. P.; Pierre, D.; Si, R.; Deng, W. L.; Ferrin, P.; Nilekar, A. U.; Peng, G. W.; Herron, J. A.; Bell, D. C.; Saltsburg, H. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 2010, 329, 1633–1636.

    Article  Google Scholar 

  8. Sun, Q. M.; Wang, N.; Bing, Q. M.; Si, R.; Liu, J. Y.; Bai, R. S.; Zhang, P.; Jia, M. J.; Yu, J. H. Subnanometric hybrid Pd-M(OH)2, M=Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 2017, 3, 477–493.

    Article  Google Scholar 

  9. Jones, J.; Xiong, H. F.; DeLariva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G. S.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  Google Scholar 

  10. Kim, M.; Hwang, S.; Yu, J. S. Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell. J. Mater. Chem. 2007, 17, 1656–1659.

    Article  Google Scholar 

  11. Mateo, D.; Albero, J.; Garcia, H. Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy Environ. Sci. 2017, 10, 2392–2400.

    Article  Google Scholar 

  12. Yang, Z. Y.; Zheng, X. H.; Zheng, J. B. Facile synthesis of three-dimensional porous Au@Pt core-shell nanoflowers supported on graphene oxide for highly sensitive and selective detection of hydrazine. Chem. Eng. J. 2017, 327, 431–440.

    Article  Google Scholar 

  13. Li, L. X.; Huang, S. S.; Song, J. J.; Yang, N. T.; Liu, J. W.; Chen, Y. Y.; Sun, Y. H.; Jin, R. C.; Zhu, Y. Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation. Nano Res. 2016, 9, 1182–1192.

    Article  Google Scholar 

  14. Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J. Am. Chem. Soc. 2013, 135, 3768–3771.

    Article  Google Scholar 

  15. Jang, W. J.; Kim, H. M.; Shim, J. O.; Yoo, S. Y.; Jeon, K. W.; Na, H. S.; Lee, Y. L.; Lee, D. W.; Roh, H. S.; Yoon, W. L. Deactivation of SiO2 supported Ni catalysts by structural change in the direct internal reforming reaction of molten carbonate fuel cell. Catal. Commun. 2017, 101, 44–47.

    Article  Google Scholar 

  16. Dhiman, M.; Polshettiwar, V. Ultrasmall nanoparticles and pseudo-single atoms of platinum supported on fibrous nanosilica (KCC-1/Pt): Engineering selectivity of hydrogenation reactions. J. Mater. Chem. A. 2016, 4, 12416–12424.

    Article  Google Scholar 

  17. Ray, K.; Deo, G. A potential descriptor for the CO2 hydrogenation to CH4 over Al2O3 supported Ni and Ni-based alloy catalysts. Appl. Catal. B-Environ. 2017, 218, 525–537.

    Article  Google Scholar 

  18. Adibi, P. T. Z.; Pingel, T.; Olsson, E.; Grönbeck, H.; Langhammer, C. Plasmonic nanospectroscopy of platinum catalyst nanoparticle sintering in a mesoporous alumina support. ACS Nano 2016, 10, 5063–5069.

    Article  Google Scholar 

  19. Canivet, J.; Aguado, S.; Schuurman, Y.; Farrusseng, D. MOF-supported selective ethylene dimerization single-site catalysts through one-pot postsynthetic modification. J. Am. Chem. Soc. 2013, 135, 4195–4198.

    Article  Google Scholar 

  20. Cui, X. L.; Zuo, W.; Tian, M.; Dong, Z. P.; Ma, J. T. Highly efficient and recyclable Ni MOF-derived N-doped magnetic mesoporous carbon-supported palladium catalysts for the hydrodechlorination of chlorophenols. J. Mol. Catal. A-Chem. 2016, 423, 386–392.

    Article  Google Scholar 

  21. Wang, Y. T.; Li, Y.; Liu, S. L.; Li, B. Fabrication of chitin microspheres and their multipurpose application as catalyst support and adsorbent. Carbohyd. Polym. 2015, 120, 53–59.

    Article  Google Scholar 

  22. Nikolov, S.; Petrov, M.; Lymperakis, L.; Friák, M.; Sachs, C.; Fabritius, H. O.; Raabe, D.; Neugebauer, J. Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: The example of lobster cuticle. Adv. Mater. 2010, 22, 519–526.

    Article  Google Scholar 

  23. Wu, X. Y.; Shi, Z. Q.; Fu, S. D.; Chen, J. L.; Berry, R. M.; Tam, K. C. Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts. ACS Sustain. Chem. Eng. 2016, 4, 5929–5935.

    Article  Google Scholar 

  24. Keshipour, S.; Khalteh, N. K. Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles. Appl. Organomet. Chem. 2016, 30, 653–656.

    Article  Google Scholar 

  25. Baran, T.; Sargin, I.; Kaya, M.; Mentes, A. Green heterogeneous Pd(II) catalyst produced from chitosan-cellulose micro beads for green synthesis of biaryls. Carbohyd. Polym. 2016, 152, 181–188.

    Article  Google Scholar 

  26. Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] huisgen cycloaddition. Angew. Chem., Int. Ed. 2009, 48, 5916–5920.

    Article  Google Scholar 

  27. Kaushik, M.; Basu, K.; Benoit, C.; Cirtiu, C. M.; Vali, H.; Moores, A. Cellulose nanocrystals as chiral inducers: Enantioselective catalysis and transmission electron microscopy 3D characterization. J. Am. Chem. Soc. 2015, 137, 6124–6127.

    Article  Google Scholar 

  28. Yan, N.; Chen, X. Sustainability: Don’t waste seafood waste. Nature 2015, 524, 155–157.

    Article  Google Scholar 

  29. Duan, B.; Zheng, X.; Xia, Z. X.; Fan, X. L.; Guo, L.; Liu, J. F.; Wang, Y. F.; Ye, Q. F.; Zhang, L. N. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/Urea aqueous solution as cell carriers. Angew. Chem., Int. Ed. 2015, 54, 5152–5156.

    Article  Google Scholar 

  30. Fang, Y.; Duan, B.; Lu, A.; Liu, M. L.; Liu, H. L.; Xu, X. J.; Zhang, L. N. Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromolecules 2015, 16, 1410–1417.

    Article  Google Scholar 

  31. Guo, L.; Duan, B.; Zhang, L. N. Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway. Nano Res. 2016, 9, 2149–2161.

    Article  Google Scholar 

  32. Duan, B.; Liu, F.; He, M.; Zhang, L. N. Ag-Fe3O4 nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chem. 2014, 16, 2835–2845.

    Article  Google Scholar 

  33. Heux, L; Brugnerotto, J; Desbrieres, J; Versali, M. F.; Rinaudo, M. Solid state NMR for determination of degree of acetylation of chitin and chitosan. Biomacromolecules 2000, 1, 746–751.

    Article  Google Scholar 

  34. Zhang, G. H.; Yi, H.; Zhang, G. T.; Deng, Y.; Bai, R. P.; Zhang, H.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. W. Direct observation of reduction of Cu(II) to Cu(I) by terminal alkynes. J. Am. Chem. Soc. 2014, 136, 924–926.

    Article  Google Scholar 

  35. Nelson, R. C.; Miller, J. T. An introduction to X-ray absorption spectroscopy and its in situ application to organometallic compounds and homogeneous catalysts. Catal. Sci. Technol. 2012, 2, 461–470.

    Article  Google Scholar 

  36. Guo, M.; Dong, H.; Li, J.; Cheng, B.; Huang, Y. Q.; Feng, Y. Q.; Lei, A. W. Spectroscopic observation of iodosylarene metalloporphyrin adducts and manganese(V)-oxo porphyrin species in a cytochrome P450 analogue. Nat. Commun. 2012, 3, 1190.

    Article  Google Scholar 

  37. Li, J.; Jin, L. Q.; Liu, C.; Lei, A. W. Quantitative kinetic investigation on transmetalation of ArZnX in a Pd-catalysed oxidative coupling. Chem. Commun. 2013, 49, 9615–9617.

    Article  Google Scholar 

  38. Zhang, G. H.; Li, J.; Deng, Y.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. W. Structure-kinetic relationship study of organozinc reagents. Chem. Commun. 2014, 50, 8709–8711.

    Article  Google Scholar 

  39. Huang, Z. L.; Jin, L. Q.; Feng, Y.; Peng, P.; Yi, H.; Lei, A. W. Iron-catalyzed oxidative radical cross-coupling/cyclization between phenols and olefins. Angew. Chem., Int. Ed. 2013, 52, 7151–7155.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Program of National Natural Science Foundation of China (No. 21334005), the Major International (Regional) Joint Research Project of National Natural Science Foundation of China (No. 21620102004), and the National Natural Science Foundation of China (Nos. 21390402, 201703159 and 21520102003). Special thanks to Prof. Nanfeng Zheng in Xiamen University and Prof. Hexiang Deng in Wuhan University for their discussing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiwen Lei or Lina Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, X., Deng, Y., Duan, B. et al. Ultra-small Pd clusters supported by chitin nanowires as highly efficient catalysts. Nano Res. 11, 3145–3153 (2018). https://doi.org/10.1007/s12274-018-1977-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-1977-0

Keywords

Navigation